LONG-RANGE DEPENDENCE IN DAILY VOLATILITY ON TUNISIAN STOCK MARKET

Chaker Aloui*

Working Paper 0340

*Department of Management, Faculty of Economics and Management Sciences of Tunis, University of Tunis El Manar. chaker.aloui@fsegt.rnu.tn.
Abstract

The aim of this paper is to enfold the volatility dynamics on the Tunisian stock market via an approach founded on the detection of persistence phenomenon and long-term memory presence. More specifically, our objective is to test whether long-term dependent processes are appropriate for modelling Tunisian stock market volatility. The empirical investigation has used the two Tunisian stock market indexes IBVMT and TUNINDEX for the period 1998 to 2004 in daily frequency. Through the estimation of FIGARCH processes, we show that the long-term component of volatility has an impact on the stock market return series.
1. Introduction
Volatility persistence is a subject that has been thoroughly investigated since the introduction of ARCH models by Engle (1982). It is not only important in forecasting future market movements but also is central to a host of financial issues such as portfolio diversification, risk management, derivative pricing, and market efficiency. Although it is common to find significant statistical relationship between current measures of volatility and lagged values, it has been very difficult to find models that adequately specify the time series dependencies in volatilities in speculative returns data. Ding, Granger and Engle (1993) show that stock market absolute returns exhibit a long-memory property in which the sample autocorrelation function decays very slowly and remains significant even at high order lags. Evidence in favour of long-range dependence in measure of volatility has been largely documented. Despite the fact that emerging markets in the last two decades had attracted the attention of international investors as means for higher returns such as with diversification of international portfolio risk, few studies had investigated the issue of volatility persistence using non-linear estimation models. Emerging markets differ from developed markets in that the former are, in most cases, characterized by thinly traded markets, market microstructure distortions, lack of institutional development, and lack of corporate governance. These factors hinder the flow of information to market participants. Moreover due to lack of a culture of equity in most of these markets, participants slowly react to information. This paper will focus on Tunisian Stock Exchange (TSE) while revisiting the issue of volatility persistence in stock market returns. We attempt to empirically investigate market returns and volatility persistence in a distinct approach from previous researches by testing for presence of fractional dynamics (i.e. long memory process in TSE volatility). As we raised the categorical absence of empirical studies founded on the fractional integrated behaviour in the conditional variance of Tunisian stock returns, this investigation proves to be a first essay in the Tunisian context.

Data used are the two Tunisian stock indexes: IBVMT index and TUNINDEX for daily returns during the period from December 31, 1997 to April 16, 2004. Empirical results provided evidence that the daily stock market volatility exhibits long-range dependency. The fractional integrated behaviour in the conditional variance of the daily Tunisian stock indexes have important implications on efficiency tests, on optimal portfolio allocations, and consequently on optimal hedging decisions.

The following section looks at the theoretical background of long memory and discusses its measurement. Section 3 presents some practical considerations of long memory processes. Section 4 provides an overview on the Tunisian stock market. Section 5 reviews the fractionally integrated GARCH model. Finally, results are presented in section 6 with conclusions in section 7.

2. Theoretical Background
2.1. Some Conceptual Issues
At this point, it is worthwhile to elucidate the conceptual issues of volatility, standard deviation, and risk. In financial market theory, volatility is often used to refer to standard deviation: \(\sigma \) or variance: \(\sigma^2 \), estimated from a historical return time equation:

\[
\sigma^2 = \frac{1}{N-1} \sum_{t=1}^{N} (r_t - \bar{r})^2
\]

\(\bar{r} \) is the mean return. The sample standard deviation statistic: \(\hat{\sigma} \) is the distribution free parameter representing the second moment characteristic of the sample. Only when \(\sigma \) is attached to a standard distribution, such as normal or Student-t distributions, the required
probability density and cumulative probability density can be derived analytically. In fact, σ can be estimated from an irregular shape distribution, in which case the probability density will have to be derived empirically. In a continuous time context, σ is a scale parameter that multiplies and reduces the size of the fluctuations generated by a standard Wiener process. Indeed, different shapes of financial assets returns are specified either through the dynamic of the underlying stochastic process or through whether or not the parameter is time varying. Therefore, it would be disjointed to assimilate the standard deviation to a good measure of risk dice when it is neither attached to a distribution data nor to a dynamics of assessment. In the same way, the use of the standard deviation as measure of uncertainty often implicitly implies the presence of a normal distribution in the financial assets returns distribution. However, the junction between concepts of volatility and risk is ambiguous and the risk, in particular, is often associated to a possible presence of weak or negative returns. Most measures of distribution make no such distinction (Granger and Poon (2002), p. 5).

According to Sharpe, the measure of portfolio performance management is defined as being the return in excess of risk free rate divided by the standard deviation. The Sharpe measure incorrectly penalizes the occasionally high returns. In reflection, Markowitz (1991) advances the notion of the "semi-variance", where the underlying idea takes into account only square returns below the mean return. However, this notion was not considered a big success by portfolio managers.

2.2. Absolute and Squared Returns as Volatility Proxies

As mentioned previously, volatility is often estimated through a sample standard deviation. Researchers have pointed out methods for volatility estimation that are designed to exploit or to attenuate the influence of extreme values. Ding, Granger and Engle suggest measuring volatility directly from absolute returns. Indeed, Davidian and Cornell (1987) show that absolute returns volatility is more robust against asymmetry and non-normality. Some empirical studies (e.g. Taylor (1986) present evidence that absolute returns based models generate better volatility forecasts than models founded on squared returns. Given that volatility is a latent variable, the actual volatility is usually estimated from a sample using equation (1), which presents some inaccuracies when the sample size is small. Before high frequency data became widely available, many researchers have resorted to using daily squared returns, computed from closing prices as daily proxy of volatility.

2.3. Defining and Measuring Long-Memory

According to Granger and Ding (1996), a series is said to have a long-memory if it displays a slowly declining autocorrelation function (ACF) and an infinite spectrum at zero frequency. Specifically, the series: $\{y_t\}_{t=0}^\infty$ is said to be a stationary long-memory process, if the ACF: $\rho(k)$ behaves as:

$$\rho(k) \approx c |k|^{2d-1} \text{ as } |k| \to \infty$$ \hspace{1cm} (1)

where $0 < d < 0.5$ and c is some positive constant. The ACF in (1) displays a very slow rate of decay to zero as k goes to infinity and $\sum_{k=-\infty}^{\infty} \rho(k) = \infty$. This slow rate of decay can be contrasted with ARMA processes, which have an exponential rate of decay and satisfy the following bound:

$$|\rho(k)| \leq ba^{k}, \hspace{0.5cm} 0 < b < \infty, \hspace{0.5cm} 0 < a < 1.$$ \hspace{1cm} (2)

Consequently, $\sum_{k=-\infty}^{\infty} |\rho(k)| < \infty$. A process that satisfies (2) is termed short-memory. Equivalently, long-memory can be defined as a spectrum that goes to infinity at the origin:

$$f(\omega) \approx c e^{-\omega^2} \text{ as } \omega \to 0$$ \hspace{1cm} (3)
A simple example of long-memory is the fractionally integrated noise process: $I(d)$, with $0 < d < 1$.

\[(1-L)^d y_t = u_t \]

L is the lag operator, and $u_t \sim iid(0, \sigma^2)$.

This model includes the traditional extremes of a stationary process: $I(0)$ and a non-stationary process: $I(1)$. The fractional difference operator: $(1-L)^d$ is well defined for a fractional d and the ACF of this process displays a hyperbolic decay consistent with equation (1). A model that incorporates the fractional differencing operator is a natural starting point to capture long-memory. This is the underlying idea of the ARFIMA and FIGARCH class of processes. In practice we must resort to estimating the ACF with usual sample quantities

\[
\hat{\rho}(k) = \frac{1}{T} \sum_{t=k+1}^{T} \left(y_t - \bar{y} \right) \left(y_{t-k} - \bar{y} \right)
\]

A second approach to measure the degree of long memory has been to use semi parametric methods. This allows one to review the specific parametric form, which is misspecified and could lead to an inconsistent estimate of the long memory parameter. In this paper, we consider the most two frequently used estimators of long memory parameter: d. The first estimator is the Geweke and Porter-Hudak (1983) (GPH) estimator, which is based on a log-periodogram regression. Suppose $y_0, y_1, ..., y_{T-1}$ is the dataset and define the periodogram for the first m ordinates as,

\[
I_j = \frac{1}{2\pi T} \sum_{t=0}^{T-1} y_t \exp(i\omega_j t) \]

where $\omega_j = 2\pi j / T$, $j = 1, 2, ..., m$, and where m is a chosen positive integer. The estimate of d can then be derived from linear regression of $\log I_j$ on a constant and the variable $X_j = \log[2\sin(\omega_j / 2)]$, which gives:

\[
\hat{d} = -\frac{\sum_{j=1}^{m} (X_j - \bar{X}) \log I_j}{2 \sum_{j=1}^{m} (X_j - \bar{X})} \]

Robinson (1995) provides formal proofs of consistency and asymptotic normality for the Gauss case: $-0.5 < d < 0.5$. The asymptotic standard error is $\pi / \sqrt{24m}$. The bandwidth parameter m must converge infinitely with the sample size, but at a slower rate than \sqrt{T}. Clearly, a larger choice of m reduces the asymptotic standard error, but the bias may increase. The bandwidth parameter was set to (T) in Geweke and Porter-Hudack (1983); while Hurvich, Deo and Brodsky (1998) show the optimal rate to be $O(T^{4/5})$. Recently, Deo and Hurvich (2001) have shown that the GPH estimator is also valid for some non Gaussian time-series. Velasco (1999) has shown that consistency extends to $0.5 < d < 1$ and asymptotic normality to $0.5 < d < 0.75$. The other popular semiparametric estimator is that of Robinson (1995). Essentially, this estimator is based on the log-periodogram and solves:

\[
\hat{d} = \arg \min_{d} R(d) \]

\[
R(d) = \log \left(\frac{1}{m} \sum_{j=1}^{m} \omega_j^{2d} I_j \right) - \frac{2d}{m} \sum_{j=1}^{m} \omega_j
\]
The estimator is asymptotically more efficient than the GPH estimator and consistency and asymptotic normality of \(\hat{d} \) are available under weaker assumptions than Gaussianity. The asymptotic standard error for \(\hat{d} \) is \(1/(2\sqrt{m}) \). Robinson and Henry (1999) have shown that this estimator is valid in the presence of some forms of conditional heteroskedasticity.

3. The Practical Considerations

Previous studies of long-memory and fractional integration in time series are numerous. Barkoulas, Baum, and Oguz (1999) studied the long run dynamics of long term interest rates and currencies. Recent studies of stock prices include Cheung and Lai (1995), Lee and Robinson (1996), and Andersson and Nydahl (1998). Batten, Ellis, and Hogan (1999) dealt with credit spreads of bonds. Wilson and Okunev (1999) searched for long term co-dependence between stock and property markets. While the results on the level of returns are mixed, there is general consensus that the unconditional distribution is non-normal and that there is long-memory process in squared and absolute returns. The following are some issues; and although not mutually exclusive, they are separated by headings for easier discussions:

3.1. Risk and Volatility

Standard deviation is a statistical measure of variability. In finance literature, it has been called the measure of investment risk. Balzer (1995) argues that standard deviation is a measure of uncertainty; and that it is only a candidate risk measure, among many others. Markowitz (1959) and Murtagh (1995) found that portfolio selection based on semi-variance tend to produce better performance than those based on variance. A normal distribution is completely characterised by its first two statistical moments, namely, the mean and the standard deviation. Once nonlinearity is introduced; investment returns distribution is likely to become markedly skewed away from a normal distribution. In such cases, higher order moments such as skewness and kurtosis are required to specify the distribution. Standard deviation, in such a context, is a far less meaningful measure of investment risk and does not seem to be a good proxy for risk. While recent developments are interested in the conditional volatility and long-memory in squared and absolute returns, most practitioners continue to think in terms of unconditional variance and continue to work with unconditional Gaussian distribution in financial applications. Recent publications are drawing attention to the issue of distribution characteristics of market returns, which cannot be summarized by a normal distribution especially in emerging markets (Bekaert et al. (1998)).

3.2. Estimating and Forecasting Asset Prices

Earlier perception was that deseasonalised time series could be viewed as consisting of two components: a stationary component and a non-stationary component. However, it is perhaps more appropriate to think of the series consisting of both a long and a short memory components. A semi-parametric estimate \(d \) can be the first step in building a parametric time series model as there is no restriction on the spectral density away from the origin. Fractional ARIMA or ARFIMA can be used in forecasting, since the debates on the relative merits of using this class of models are still inconclusive (Hauser, Pötscher, and Reschenhofer (1999), Andersson (1998)). Lower risk bounds and properties of confidence sets of so called ill-posed problems associated with long-memory parameters are also discussed in Potscher (1999). The paper casts doubts on the used statistical tests in some semiparametric models, and argues that assumptions have to be imposed regarding the set of feasible data-generating processes in order to achieve uniform convergence of the estimator.

3.3. Portfolio Allocation Strategy

The results of Porterba and Summers (1988) and Fama and French (1988) provided evidence that stock prices are not truly random walk. Based on this, Samuelson (1992) has rationally
deduced that it is more appropriate to have more equity exposure with long investment horizon than with short horizon. Optimal portfolio processes, other than white noise, can also suggest lightening-up on stocks when they have risen above trend and loading-up when they have fallen below trend. This coincides with the conventional wisdom that long-horizon investors can tolerate more risk and therefore gain higher-mean returns. As one grows older, one should hold less equity and more assets with lower variance than equities. This argues “market timing” asset allocation policy and the use of “strategic” policy by buying and holding as implied by the random walk model. There is also the secondary issue of short-term versus long-horizon tactical asset allocation. Persistence or a more stable market calls for buying and holding after market dips. This would likely be a mid to long-horizon strategy in an upward market trend. Whereas in a market that exhibits anti-persistence, asset prices tend to reverse their trend in the short term creating short-term trading opportunities. Taking transaction costs into account, it is unclear whether trading the assets would yield higher risk adjusted returns. This area of research may be of interest to practitioners.

3.4. Diversification and Fractional Co-integration
If assets are not close substitutes for each other, one can reduce risk by holding such substitutable assets in the portfolio. However, if the assets exhibit long-term relationship (e.g., can be co-integrated over the long-term), there may be little gain in risk reduction by holding such assets jointly in the portfolio. The finding of fractional co-integration implies the existence of long-term co-dependencies, thus reducing the attractiveness of diversification strategy as a risk reduction technique. Furthermore, portfolio diversification decisions in the case of strategic asset allocation may become extremely sensitive to the investment horizon if long-memory is present. As Cheung and Lai (1995) and Wilson and Okunev (1999) have noted, there may be diversification benefits in the short and medium term; but not if long-memory is present and the assets are held together over the long term.

3.5. Multi-fractal Model of Asset Returns and FIGARCH
The recently developed multi-fractal model of asset returns (MMAR) of Mandelbrot, Fisher and Calvet (1997) and FIGARCH process of Baillie, Bollerslev, and Mikkelsen (1996) incorporate long-memory and thick-tailed unconditional distribution. These models account for most observed empirical characteristics of financial time series, which show-up as long tails relative to the Gaussian distribution and long-memory in the volatility (absolute return). The MMAR also incorporates scale-consistency, in the sense that a well-defined scaling rule relates return over different sampling intervals.

3.6. Stock Market Weak form Efficiency
A time series that exhibits a long memory process violates the weak form of efficient market hypothesis developed by Fama (1970), which states that the information in historical prices or returns is not useful or relevant in achieving excess returns. Consequently the hypothesis that prices or returns moves randomly (random walk hypothesis) is rejected.

4. Tunisian Stock Market Overview

4.1. The Main Reform Measures Concerning the TSE

4.1.1. Fiscal regime for holdings
Any company listed on the stock exchange and directly or indirectly holding at least 95% of capital in other companies can, as the parent company, opt for tax assessment on the basis of combined earnings. For priority to be subject to corporate tax law, the companies must be both established in Tunisia, have the same accounting year, and the same opening and

¹ Note Law n° 2000-98 of 25 December.
closing dates. Starting January 1999 companies, which open their capital to the public, were initially granted tax incentives in the form of a reduced tax rate of 20% to 35% for a period of three years. Starting February 2002, incentives were extended for an additional period of three years with a view to encourage companies to be more transparent and to mobilise public savings by increasing the range of offerings through posting new stocks on the market.

4.1.2. Amendment of Financial Market Council: modification of commissions levied

This amendment supports greater transparency by requiring that companies, seeking this kind of funding, provide more complete and reliable information to the Financial Market Council (CMF) and to shareholders. To encourage new issues and transactions on the financial market, commissions to the CMF and the TSE were reduced. Previously calculated on the basis of the amount of the issue, commissions to the CMF are henceforth set at 0.2% of the nominal value of the issue.

4.2. Tunisian Stock Exchange Trends

TSE sent a higher level of public securities and a greater volume of transactions for the second straight year. However despite larger fiscal incentives, no new companies that open their capital to the public were posted on the stock exchange in 2000. The CMF published regulations for public call for savings, which specified conditions, procedures, and responsibilities of stock brokers and companies issuing securities through public calls for savings. With respect to the official quotation, stock market activity was characterised by two distinct phases: i) the first nine months of the year showed sustained demand for securities, especially active stocks, which drove up prices as well as indicators of market trends; ii) last quarter of the year showed gradual diminishing of pressure, as supply based on new stock offerings dried-up and volume and indexes fell. In the absence of new listings in 2000, a major event for the TSE was merger of Tunisian Banking Company (STB), the Tunisian Economic Development Bank (BDET) and the National Bank for Development of Tourism (BNDT). This operation has created the largest banking establishment in Tunisia, with stock market capitalization of nearly 300 MTND. Since the two previously separate banks had already been posted on the stock market, the number of listed companies went down to 42. Two companies were privatised in 2000, the 54.5% in MOTEUR shares owned by STB were sold to a private group, and the 13% in the SOTUMAG Company held by three public structures were sold through public offering. “Air Liquide Tunisie” took over the Tunisian Liquid Gas Company (STUGAL) by merger. Trade of on-stock listing amounted to 919 MTND, up 66% compared to 1999 vs. 134% from 1998 to 1999. The volume of transaction fell significantly in the last quarter to a monthly average of 68 MTND vs. 80 MTND over the first nine months of the year. Volume on stock market picked up in the light of figures of 1999 and the first half of 2000 concerning posted companies, dividend distribution, and 13 capital increases operations. Total profits posted by listed companies on the basis of 1999 activity were up in 2000 by 14%, while dividends per share increased by an average 16%. Despite the overall improvement in distributed profit, the average market price earning ratio (PER), indicating the time required to recover investment, was up from 13 in 1999 to 16 in 2000, and tied to the higher cost of stock exchange quotations. The same forces that marked trading also accounted for an improvement in the securities ration rate, which reached 23.6% vs. 16.7% in 1999 and 9.7% in 1998. Likewise, the average market liquidity rate was up slightly from 46% in 1999 to 51% in 2000. However, trade remained insufficiently diversified, concentrated on a limited number of stocks, and almost two thirds of total transactions involved just 10 stocks. In 2001, stock market quotations were marked by a process to adjust stock prices, which had increased significantly during the last two years, and

by weak demand for securities, which sought mainly new issues made that year. Lack of confidence on the part of investors was the reason behind low demand, despite the favourable financial results published by listed companies. This became even more complicated during the last quarter after the events of September 11th. Companies listed on the TSE increased from 42 at the end of 2000 to 45 at the end of 2001. The new members were included by public sale and by public subscription to capital increase transactions. In fact, these transactions, have involved 28.5 MTND for 2,130,000 shares. The foreign acquisition of shares posted on the TSE represented just 16 MTND, about a quarter of 2000’s level (68 MTND). Sale of such stocks by foreigners fell from 91 to 39 MTND. For the third straight year, no portfolio investments showed a negative balance of 23 MTND. During this period (1998-2004), trading was not very diversified, but rather concentrated on a small number of stocks, of which almost 50% in terms of traded capital went for just 4 listings out of the 45 companies quoted on the TSE. During 2003, financial market activity showed timid improvement, with a slight increase in the TUNINDEX and BVMT indexes and a drop in the volume of issues by public call for savings and transactions on quotations. Starting in the third quarter, the stock market activity showed gradual recovery as seen in higher prices for key stocks or for strong market capitalization. This upward trend was influenced by improved national economic conditions, the 87.5 base point drop in the Central Bank of Tunisia’s key rate, heightened confidence of operators, and the return of foreign investors. With no new entries on the market, the number of companies quoted on the stock exchange dropped from 46 in 2002 to 45 in 2003. The volume of transactions on the market fell by 225,105 MTND (31%) in 2003 to 238 MTND, an average daily volume under a million dinars, compared to 1.4 MTND in 2002. Some 12.9 million securities were transacted in 2003, down from 17 million in 2002, denoting a drop of 24.2%. Exchange of securities and transacted capital did not show much diversity, focusing on a limited number of stocks. Six stocks accounted for more than 60% of total capital transacted in 2003. Sector-related breakdown of traded stocks showed a 34% share for the banking sector in 2003, down from 38% in 2002. The share of the industrial sector also decreased from 38% in 2002 to 29% in 2003; but the share of the services sector increased in 2003 to 27%, up from 16% in 2002. The low volume of transactions was noticed through the rotation rate (down from 12% in 2002 to 8% in 2003) and the market’s liquidity rate (down from 42% in 2002 to 33% in 2003).

5. Modeling The Long Memory of The Volatility

5.1. Long Run Memory and ARFIMA Process

Traditionally, the time series econometrics centred itself around two alternatives: the presence of a unit root, indicating a non-stationary set; and the absence of such a unit root, indicating a stationary set. These two cases correspond to processes of short memory of ARIMA (p,d,q) and ARMA(p,q). These classic modelling do not take in account the intermediate cases where a fractional integration parameter exists. However, the presence of such co-efficiency is especially interesting since it permits characterizing processes of long memory. These processes, called ARFIMA, have been introduced by Granger and Joyeux (1980) and Hosking (1981). ARFIMA accounts the short term behaviour of the set through autoregressive and mobile average, and the long term behaviour by means of the fractional integration parameter. The ARFIMA(p,d,q) process can be defined as follows:

$$\Phi(L)(1-L)^d y_t = \Theta(L)\varepsilon_t$$ \hspace{1cm} (10)

3 BATAM Company was written off the stock market on 10 February 2003, as per decision of the market’s governing council.
where $\Phi(L)$ and $\Theta(L)$ are lag polynomials of p and q respectively; ε_t is a White noise process; and:
$$(1-L)^d = 1 - dL - \frac{d(1-d)}{2!}L^2 - \frac{d(1-d)(2-d)}{3!}L^3 -$$

ARFIMA (p,d,q) processes are stationary and invertible when $d \in [-1/2, 1/2]$ and $d \neq 0$.

5.2. Short and Long Term Memory and FIGARCH processes

Considering a possible fractional integration of the conditional variance has been evoked initially by Ding and Granger (1996) and Ding, Granger and Engle (1993). Positively, FIGARCH processes have been introduced by Baillie, Bollerslev and Mikkelsen (1996). The starting point is a GARCH (p,q) process. It can be written as follows:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2$$

where σ^2 is the conditional variance; $\alpha_0 > 0; \alpha_i \geq 0; \beta_j \geq 0, i = 1, ..., q$. GARCH(p,q) process are short memory processes since the effect of a shock on the conditional variance decreases at an exponential rate. GARCH(p,q) can be also written as follows:

$$[1 - \alpha(L) - \beta(L)]\varepsilon_t^2 = \alpha_0 + [1 - \beta(L)]\mu_t$$

Consequently, when the lag polynomial $[1 - \alpha(L) - \beta(L)]$ contains a unit root, the GARCH process becomes an integrated GARCH process, denoted as IGARCH(p,q). IGARCH(p,q) process can be written as:

$$\Phi(L)[1-L]^{d} \varepsilon_t^2 = \alpha_0 + [1 - \beta(L)]\mu_t$$

With $\Phi(L) = [1 - \alpha(L) - \beta(L)](1-L)^{-1}$

Les FIGARCH processes constitute an alternative between GARCH processes and IGARCH processes and result with the equation (4) by replacing the operator $(1-L)$ by the operator $(1-L)^d$, where d is the fractional integration parameter. A FIGARCH process can be written as follows:

$$\phi(L)(1-L)^d \varepsilon_t^2 = \alpha_0 + [1 - \beta(L)]\mu_t$$

Roots of $\phi(L)$ and $[1 - \beta(L)]$ polynomials being outside the unit circle. Thus, if $d = 0$, FIGARCH(p,d,q) process will be reduced to a GARCH(p,q). if $d = 1$, FIGARCH process will be an IGARCH.

By replacing μ_t by its value according to σ_t^2, one can write equation (5) as follows:

$$[1 - \beta(L)]\sigma_t^2 = \alpha_0 + [1 - \beta(L) - \phi(L)(1-L)^d] \varepsilon_t^2$$

The variance equation is then given by:

$$\sigma_t^2 = \alpha_0[1 - \beta(t)]^{-1} + \lambda(L)\varepsilon_t^2$$

With; $\lambda(L) = [1 - [1 - \beta(L)]^{-1}\phi(L)(1-L)^d] = \lambda_1L + \lambda_2L^2 + ...$ and $\lambda_k \geq 0$ et $k = 1, 2, ..., n$

Baillie, Bollerslev et Mikkelsen (1996) note that the effects of a shock on the conditional variance of FIGARCH(p,d,q) decreases at a hyperbolic rate when $0 \leq d < 1$.

8
5.3. Data and Statistical Distribution

5.3.1 Data

Our empirical investigation is conducted using daily returns of two Tunisian stock indexes (IBVMT\(^4\) and TUNINDEX\(^5\)). The data covers the period (1997/12/31-2004/4/16) and totals 1593 observations. Daily returns are calculated for the two indexes as continuous returns at time \(t\); \(r_{t,i}\). In other words, as the natural log difference in the closing market index \(p_t\) between two days as shown below:

\[
\frac{P_t}{P_{t-1}} = 100 \log \left(\frac{P_t}{P_{t-1}} \right)
\]

5.3.2 Statistical distribution

The BVMT index closed the year 2000 at 1.425, up 76% vs. 74% in 1999. The TUNINDEX followed the same trend but with a less sustained pace than the previous year; its rate of increase dropped from 30% in 1999 to 21% in 2000. Still some decrease was noted over the last quarter for both indexes, as transactions went down and a number of market quotations shifted. Capital increases by listed companies and sustained increase in a number of stock exchange prices contributed to higher stock market capitalization. At 3.9 TND billions, this was up by 16.9% vs. 35.6% in 1999. Its shares in GDP increased from 10.9% in 1998 to 13.5% in 1999 then to 14.6% in 2000. About the TSE indicators, lower stock prices during 2001 led to a drop, after two years of strong growth. The TUNINDEX index lost 176 points (12.2%) after gaining 250 points the year before. Similarly, the BVMT index fell by 429 points (30%) below the 1000 point mark. Stock market capitalization fell, in 2001 by 614 MTND, to 3275 MTND despite the posting of new companies and the initiative of a number of listed companies to increase capital. After two years of downward movement, the TUNINDEX index rose by 11.7% between end of December 2002 and end of December 2003. Following downward movement throughout the first quarter of 2003 (with the index hitting its lowest level of 1017.2 on 18 March 2003), the trend reversed itself in April and the index rose over the next few months, closing for the year at its highest 2003 level of 1250.18 points. The BVMT index fell over the first quarter, reaching its lowest level of the year (707.94 points) on 18 March 2003. Starting in April, it began to climb once again to a high of 966.09 points on 30 July 2003, remaining above 900 points before closing for the year at 939.78 points, representing a 20% increase in annual slide. As for financial performance, 14 companies enjoyed higher 2003 profits and 25 others (six of which were posted on the stock market) underwent losses. Despite the fact that BATAM was written off the stock market, capitalization increased by 4.7% in 2003 to 2,976 MTD vs. 2,842 MTD in 2002. Still, the share of this aggregate in GDP continued to fall in 2003, amounting to 9.2% (vs. 9.5% in 2002 and 11.4% in 2001). As for sector-related breakdown of this capitalization, the share of the banking sector remained highest, though down from 54% to 52%. Results reported in table 2 call for the following commentaries:

1. Mean returns of the IBVMT are the highest compared to the TUNINDEX. According to the t-statistics, only IBVMT mean returns are significantly different from zero at

\(^4\) The IBVMT index evolution reflects the stock market average return. Are included in the reference sample all companies admitted in stock market, before it is adjusted on 31 March, 1998. The new reference sample limits itself to values of which the frequency of quotation is superior to 60%. The BVMT index has been published under its present shape on April first, 1998, with a base value of 465.77 on 31 March 1998.

\(^5\) It is a new stock market capitalization index (base 1000 on 31 December 1997). It was initially published on first April 1998. Concerning its calculation, it is taken account of mean weighted return. The weight corresponds to the number of exchanged stocks. The base sample is composed of values admitted by their ordinary shares to stock market quotes and of which the living period in one of market quotes (primary or secondary market) it is of at least 6 months.
5% significance level. Medians’ returns are positive and confirm the same ranking of
the indices, implying skewed series with departure from normality.

2. It is evident that the two indices’ returns are volatile (see figures 2 and 3). This has
been confirmed by ARCH test where the null hypothesis of homoscedastic returns
is rejected at 1% significance level. There is evidence of heteroscedasticity in the
daily and weekly two indices and for the frequencies. In other words, the BVMT and
TUNINDEX returns exhibit clustering volatility and a tendency for large (small)
asset price changes to be followed by other large (small) price changes of either sign.
Changes tend to be time dependent.

3. Indices’ returns display significant positive skewness where the null hypothesis of
skewness coefficients conforming to the normal distribution value of zero is rejected.
This result is in compliance with means greater than the medians in (1).

4. The null hypothesis of kurtosis coefficients conforming to the normal distribution
value of three is rejected at 5 percent significance level for the BVMT and
TUNINDEX weekly and daily returns. Thus, the returns of both indices are
leptokurtic and their distributions have thicker (fatter) tails than that of a normal
distribution.

5. Results of both (3) and (4) have been confirmed by rejecting the null hypothesis of the
bivariate Jarque-Bera test for unconditional normal distribution of the two stock
market weekly and daily index returns.

6. With respect to Dickey-Fuller and Phillips-Perron unit root statistics, the null
hypothesis for both tests whether indices returns, using t-statistics, have unit root is
rejected in favour of the alternative that the four series are trend stationary process
with a degree of predictability.

7. In sum, the BVMT and TUNINDEX weekly and daily returns tend to be characterized
by positive skewness, excess kurtosis, and departure from normality. The two
indexes, also, display a degree of heteroscedasticity. The findings are confirm other
market indexes and are consistent with several other empirical studies\(^6\), in which
emerging markets returns depart from normality and the null hypothesis for a random
walk is rejected.

6. Figarch Modelling

6.1. Preliminary Analysis

6.1.1. Modified R/S test (Lo (1991))

Before estimating FIGARCH processes, we proceed to the application of the modified \(R/S\)
test (Lo (1991)) in order to detect the presence, if any, of long-range memory in Tunisian
stock market volatility series. Let us simply recall that the limiting distribution of the
modified \(R/S\) statistic is known and thus it is possible to test the null hypothesis of short-
term memory against the alternative of long-term memory. The critical values of this statistic
have been tabulated by Lo (1991). The author demonstrated that this statistic was not robust
to short range dependence, and proposed the following one:

\(^{6}\) Mandelbort (1963) and Fama (1965) showed that unconditional distribution of security price changes to be
leptokurtic, skewed and volatility clustered. Bekaert et al. (1998) provided evidence that 17 out of the 20
emerging markets examined their monthly returns had positive skewness and 19 out of 20 had excess kurtosis,
so that normality was rejected for more than half of the countries.
This consists of replacing the variance by the HAC variance estimator in the denominator of the statistic. If \(q = 0 \), Lo's statistic \(R/S \) reduces to Hurst's statistic. Unlike spectral analysis, which detects periodic cycles in a series, the \(R/S \) analysis has been advocated by Mandelbrot for detecting non periodic cycles. Under the null hypothesis of no long-memory, the statistic \(T^{-1/2}Q_n \) converges to a distribution equal to the range of a Brownian bridge on the unit interval:

\[
\max_{0 \leq t \leq 1} W^0(t) - \min_{0 \leq t \leq 1} W^0(t)
\]

where \(W^0(t) \) is a Brownian bridge defined as \(W^0(t) = W(t) - tW(1) \), \(W(t) \) being the standard Brownian motion. The distribution function is given in Siddiqui (1976), and is tabulated in Lo (1991). This statistic is extremely sensitive to the order of truncation \(q \) but there are no statistical criteria for choosing \(q \) in the framework of this statistic. Andrews (1991) rule gives mixed results. If \(q \) is too small, this estimator does not account for the autocorrelation of the process, while if \(q \) is too large, it accounts for any form of autocorrelation and the power of this test tends to equal its size. Given that the power of a useful test should be greater than its size; this statistic is not very helpful. For that reason, Teverovsky, Taqqu and Willinger (1999) suggest to use this statistic with other tests. Since there is no data driven guidance for the choice of this parameter, we consider the default values for \(q = 5, 10, 25, 50 \).

Results reported in table 3 indicate that the two volatility series display a strong dependent structure. In order to verify this result and to take into account long term property, we estimate FIGARCH process.

6.1.2. Geweke Porter-Hudack (1983) tests

In this respect, two procedures have been retained: the GPH method and the maximum likelihood technique. The GPH method is founded on the behaviour of the spectral density around low frequencies. It is a two-step technique since one can estimate in the first stage the fractional integration parameter \(\hat{d} \) and, in the second stage the parameter of the GARCH model. Concerning the maximum likelihood procedure (Sowel (1992)), it is a one-step procedure: all the parameters of the FIGARCH(p,d,q) specification are estimated simultaneously. The GPH estimation of FIGARCH processes are reported in the table below. Let us recall that the function \(g(T) \) used in the spectral technique, corresponds to the number of periodogram ordinates. \(T \) is the number of observations. In order to examine the stability of the estimation when the number of periodogram ordinates vary, we have chosen different values: \(T^{0.45} \), \(T^{0.5} \), \(T^{0.55} \), and \(T^{0.8} \). Results obtained using the spectral technique (table 5.), emphasize the presence of long memory for the TUNINDEX stock returns. For the IBVMT volatility, the presence of a long-term structure depends on the number of periodogram ordinates retained. It will be also noted that the fractional integration parameter is positive in all cases. Judged by standard significance levels, \(\hat{d} \) is statistically very different from both zero and one. Concerning, the exact maximum likelihood method (table 6.), we observe, according to the SIC model selection criteria, the presence of long-term dependence structure for the IBVMT volatility.

6.1.3. Lobato and Robinson test (1998)

Lobato and Robinson’s (1998) nonparametric test for \(I(0) \) against \(I(d) \) is also based on the approximation of the spectrum of a long-memory process. In the unvaried case, the \(t \) statistic is equal to:

\[
Q_T = \frac{1}{\hat{\sigma}_T(q)} \max_{1 \leq k \leq T} \left(\sum_{j=1}^{k} (X_j - \bar{X}_T) - \min_{1 \leq k \leq T} \sum_{j=1}^{k} (X_j - \bar{X}_T) \right)
\]
$t = m^{1/2} \hat{C}_t / \hat{C}_0$ with $\hat{C}_0 = m^{-1} \sum_{j=1}^m \psi^j I(\lambda_j)$ and $v_j = \ln(j) - \frac{1}{m} \sum_{i=1}^m \ln(i)$

where $I(\lambda) = (2\pi T)^{-1} \left| \sum_{i=1}^T y_i e^{it\lambda} \right|^2$ is the periodogram estimated for a degenerate band of Fourier frequencies $\lambda_j = 2\pi j / T$, $j = 1, \ldots, m \leq \lceil T/2 \rceil$, where m is a bandwidth parameter. Under the null hypothesis of an $I(0)$ time series, the t statistic is asymptotically normally distributed. This two sided test is of interest as it allows to discriminate between $d > 0$ and $d < 0$. If the t statistic is in the lower fractile of the standardized normal distribution, the series exhibits long-memory; whilst if the series is in the upper fractile of that distribution, the series is anti-persistent. The default bandwidth suggested by Lobato and Robinson is used. The results are displayed in table 6. The first column contains the value of the bandwidth parameter while the second column displays the corresponding statistic. In the first line, the Lobato-Robinson statistic is evaluated by using this default bandwidth. As t is negative and in the lower tail of the standard normal distribution, there is evidence of long-memory volatility. As for Semi-parametric test for $I(0)$ of a time series against fractional alternatives, (i.e., long-memory and anti-persistence), let us recall that it is a semi-parametric test in the sense that it does not depend on a specific parametric form of the spectrum in the neighbourhood of the zero frequency. Concerning the parameter specifying the number of harmonic frequencies around zero, we use the bandwidth given in Lobato and Robinson. If the value of the test is in the lower tail of the standard normal distribution, the null hypothesis of $I(0)$ is rejected against the alternative that the series displays long-memory. If the value of the test is in the upper tail of the standard normal distribution, the null hypothesis $I(0)$ is rejected against the alternative that the series is anti-persistent. As shown in table 6, the t statistic is negative and is in the lower tail of the standard normal distribution, thus we can conclude to the presence of long-memory in BVMT and TUNINDEX time series volatility.

6.1.4. Lo (1991) tests
Results in table 7 indicate that only the BVMT daily and absolute returns display long-term memory for different weights as suggested by Newey and West (1987). This result confirms conclusions from Lobato and Robinson. For the TUNINDEX series, a short dependent structure seems to be present in volatility series. To verify the result taking into account this long term property, we apply the Robinson and Whittle semi-parametric estimator procedures and estimate FIGARCH processes.

6.1.5. Robinson (1994b) tests
The Robinson (1994b) averaged periodogram estimator is defined by:

$$\hat{d} = \frac{1}{2} - \frac{\ln \left(\hat{F}(q_{\hat{\lambda}})/\hat{F}(\hat{\lambda}_m) \right)}{2 \ln(q)}$$

where $\hat{F}(\lambda)$ is the average periodogram $\hat{F}(\lambda) = \frac{2\pi}{n} \left\lfloor n^{1/2}/2\pi \right\rfloor \sum_{j=1}^{n^{1/2}/2\pi} I(\lambda_j)$. By construction, the estimated parameter \hat{d} is $< 1/2$, i.e., is in the stationary range. This estimator has the following asymptotic distribution if $d < 1/4$

$$\sqrt{m} (\hat{d} - d) \rightarrow N \left(0, \frac{\pi^2}{24} \right)$$

The results of Robinson tests are reported in table 6. The Robinson procedure gives the semi-parametric average periodogram estimator of the degree of long memory of a time series. The third column in table 8 designed the optional argument that is a strictly positive constant q,
which is also strictly less than one. The second column designed the bandwidth vector \(m \). By default, \(q \) is set to 0.5 and 0.7 and the bandwidth vector is equal to \(m = n/4, n/8, n/16 \). If \(q \) and \(m \) contain several elements, the estimator is evaluated for all the combinations of \(q \) and \(m \). The first column in the table designed the estimated degree of long-memory. Concerning the BVMT daily absolute returns, the results of the estimated degree of long term memory range from 0.2310 to 0.2672 for the different values of \(q \) and bandwidth vector. For weekly absolute returns, the \(d \) parameter ranges from 0.0583 to 0.1940. Theses results indicate evidence that the BVMT volatility exhibit a long range dependency phenomenon. The fractional differential parameter is positive and \(d \in [0;0.5] \) indicates the presence of a long-range positive dependence in the conditional variance. Quite similar results are obtained for the daily and weekly absolute returns.

6.1.6. Whittle semi-parametric Gaussian estimator

The Whittle semi-parametric Gaussian estimator of the degree of long memory of a time series is based on the Whittle estimator. The first argument is the series; the second argument is the vector of bandwidths, i.e., the number of frequencies to be considered after zero. By default, the bandwidth vector \(m = n/4, n/8, n/16 \), where \(n \) is the sample size. This table gives the estimated parameter \(d \), with the number of frequencies considered. The obtained results emphasize the presence of a long-term dependence structure for all the series of volatility. Moreover, one notes a relative stability of the fractional integration parameter value for the BVMT daily volatility for the different sizes of the bandwidth vector. The results also indicate, for all the volatility series, a positive fractional integration parameter. So, all the series are characterized by a long-range positive dependence in the conditional variance. In order to verify this result and take into account this long term property, we estimate FIGARCH processes.

6.1.7. The FIGARCH process

The empirical investigation is conducted using FIGARCH (1, \(d \), 1) parsimoniously to specify the long memory process in Tunisian stock market volatility. The results in table 10 provide the following observations:

1. For the IBVMT absolute daily returns, results exhibit fractional dynamics with long memory features. The null hypothesis \(H_0 : d = 0 \) has been rejected in favour of \(d \)-value which is statistically significantly greater than zero at 1% significance level. The fractional differential parameter value recorded approximately 0.4645, confirming previous preliminary tests. There is also evidence that the BVMT volatility exhibits a long range dependency phenomenon. The fractional differential parameter is equal to 0.12115 and is statistically significant at 1% significance level. The process is considered to be long-range positive dependence in the conditional variance \(d \in [0;0.5] \).

2. Concerning the TUNINDEX daily volatility, obtained results show the significance of both \(\alpha_1 \) and \(\beta_1 \), evidence that conditional volatility is time-variant, and that there is volatility clustering effects. The results confirm that there is a tendency for shocks to persist, with large (small) innovations followed by similar ones. The estimation results of the FIGARCH(1,\(d\),1) provide evidence that the TUNINDEX daily volatility exhibits fractional dynamics. The estimated \(d \)-value is statistically significantly greater than zero and indicates the presence of positive persistence phenomenon in the TUNINDEX volatility.

3. The results also provide evidence that the aggregation of short-memory process, could lead to long memory feature, which is consistent with Granger (1980) findings. The evidence is consistent with number of emerging market characteristics.
4. As expected, the market adjusts slowly to the arrival of new information, which might be due to a number of market structural reasons such as the dominance of individual investors on trading activity who lack the equity culture and whose investment strategy is characterized by herd behaviour. The presence of non-synchronous trading is probably due to the large number of inactive stocks listed on the Tunisian Stock Exchange.

7. Conclusion
The purpose of this paper was to study the long-range dependency of stock market volatility. More specifically, our objective was to test significant evidence for the presence of fractional integrated behaviour in the conditional variance of the Tunisian stock indexes. Thus, a new class of more flexible fractionally integrated GARCH (FIGARCH) models for characterizing the long run dependencies in the Tunisian stock market volatility was proposed. The investigation is conducted using the BVMT and TUNINDEX daily and weekly indexes during the period January 1998 till the end of April 2004. In this paper, strong evidence was uncovered that the conditional variance of the BVMT and TUNINDEX indexes is best modelled as a FIGARCH process. These findings of long memory component in the volatility processes of asset returns have important implications of many paradigms in modern financial theory. So, optimal portfolio allocations may become extremely sensitive to investment horizon if the volatility returns are long-range dependent. Similarly, optimal hedging decisions must take into account any such long-run dependencies. Also, the assumption that the Tunisian Stock Market is weakly efficient is rejected due to long-range dependency in weekly and daily volatilities. This evidence is consistent with a number of emerging market characteristics. A more formal and detailed empirical investigation of these issues in the Tunisian context, would be an important task for further research.
References

Barkoulas, J. T., Baum, C. F., and Oguz, G. S. 1999a. “Fractional Dynamics in a System of Long
Term International Interest Rates”, Preprint.
____. 1999b. “A Re-examination of the Long-Memory Evidence in the Foreign Currency
Market”, Preprint.
Batten, J., Ellis, C., and Hogan, W. 1999. “Scaling The Volatility of Credit Spreads: Evidence
from Australian Dollar Eurobonds”, Preprint.
Emerging Market Returns and Asset Allocation: Analyzing returns that cannot be
____. 1987. “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and
Markets”, Princeton University Press.
Statistica Sinica, Vol. 6, pp. 97-112.

Figure 1A: Daily IBVMT and TUNINDEX Evolution (in points)

Figure 1B: Weekly IBVMT and TUNINDEX Evolution (in points)
Figure 2: IBVMT Daily Returns

Figure 3: TUNINDEX Daily Returns
Figure 4: Autocorrelations for IBVMT Absolute Daily Returns

Figure 5: Autocorrelations for the Fractionally Differenced IBVMT Absolute Returns
Appendices

Table 1: Main Tunisian Stock Market Indicators (1997-2004)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BVMT index in points (base 100 on 30 September, 1990, adjusted on 31 March 1998 to 465.77)</td>
<td>455.64</td>
<td>464.56</td>
<td>810.24</td>
<td>1 424.91</td>
<td>996.09</td>
<td>782.93</td>
<td>939.78</td>
</tr>
<tr>
<td>TUNINDEX in points (base 1000 on 31 December 1997)</td>
<td>1 000</td>
<td>917.08</td>
<td>1 192.57</td>
<td>1 442.61</td>
<td>1 266.89</td>
<td>1 191.15</td>
<td>1 250.18</td>
</tr>
<tr>
<td>Stock market capitalization (a)</td>
<td>2 632</td>
<td>2 452</td>
<td>3 326</td>
<td>3 889</td>
<td>3 275</td>
<td>2 842</td>
<td>2 976</td>
</tr>
<tr>
<td>Stock market capitalization/ GDP (in %)</td>
<td>12.6</td>
<td>10.9</td>
<td>13.5</td>
<td>14.6</td>
<td>11.4</td>
<td>9.5</td>
<td>9.2</td>
</tr>
<tr>
<td>Number of listed companies</td>
<td>34</td>
<td>38</td>
<td>44</td>
<td>42*</td>
<td>45</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>Overall volume of transaction</td>
<td>590</td>
<td>927</td>
<td>881</td>
<td>1 814</td>
<td>1 204</td>
<td>1 006</td>
<td>948</td>
</tr>
<tr>
<td>of witch: official quotation (b)</td>
<td>287</td>
<td>237</td>
<td>554</td>
<td>919</td>
<td>508</td>
<td>343</td>
<td>238</td>
</tr>
<tr>
<td>Rotation rate (in %)</td>
<td>10.9</td>
<td>9.7</td>
<td>16.7</td>
<td>23.6</td>
<td>15.5</td>
<td>12.1</td>
<td>8.0</td>
</tr>
<tr>
<td>Liquidity rate (in %)</td>
<td>36</td>
<td>37</td>
<td>46</td>
<td>51</td>
<td>49</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>PER</td>
<td>12</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

Source: TSE and CMF. (*) Indicating the absorption-merger of BDET and BNDT with STB

Table 2: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Daily frequency</th>
<th>Weekly frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBVMT returns</td>
<td>TUNINDEX returns</td>
</tr>
<tr>
<td>Mean (%)</td>
<td>4.89967</td>
<td>1.58515</td>
</tr>
<tr>
<td>t-statistic</td>
<td>2.3365</td>
<td>1.3428</td>
</tr>
<tr>
<td>Median (%)</td>
<td>1.03469</td>
<td>0.000</td>
</tr>
<tr>
<td>S. deviation (%)</td>
<td>83.6171</td>
<td>47.0108</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>5.00454</td>
<td>7.15012</td>
</tr>
<tr>
<td>Excess Kurtosis</td>
<td>2.00454</td>
<td>4.015012</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.254762</td>
<td>0.639271</td>
</tr>
<tr>
<td>Jarque Bera normality test (a)</td>
<td>244.34</td>
<td>435.43</td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test1</td>
<td>-19.63</td>
<td>-21.43</td>
</tr>
<tr>
<td>Phillips-Perron unit root test2</td>
<td>-26.39</td>
<td>-27.01</td>
</tr>
<tr>
<td>KPSS test (b)</td>
<td>0.66016 (3)</td>
<td>0.27769 (3)</td>
</tr>
<tr>
<td>ARCH- test</td>
<td>231.358</td>
<td>306.345</td>
</tr>
<tr>
<td>Maximum</td>
<td>4.000052</td>
<td>3.040505</td>
</tr>
<tr>
<td>Minimum</td>
<td>-3.06502</td>
<td>-2.04465</td>
</tr>
<tr>
<td>Sample period</td>
<td>31/12/1997</td>
<td>16/04/2004</td>
</tr>
<tr>
<td>Observation</td>
<td>1590</td>
<td>1590</td>
</tr>
</tbody>
</table>

Notes: (a) The Jarque Bera test for normality distributed as Chi-square with 2 degrees of freedom. The critical value for the null hypothesis of normal distribution is 5.99 at 5% significance level. Higher test values reject the null hypothesis.

1 Dickey and Fuller (1979) devised a procedure to formally test for the presence of unit root using three different regressions. In our case, the following regressions with constant and trend is used to test for nonstationarity:

\[\Delta y_t = \alpha_0 + \gamma y_{t-1} + \alpha_1 t + \sum_{i=2}^{p} \beta_i \Delta y_{t-i} + \epsilon_t \]

The null hypothesis is that \(\gamma = 0 \) for stochastic nonstationary process.

2 Phillips-Perron nonparametric unit root tests were used because they allow for a general class of dependent and heterogeneously distributed innovations, contrary to other unit root tests (see Phillips and Perron, 1998).
Table 3: Lo R/S Modified Test

<table>
<thead>
<tr>
<th>Order</th>
<th>\hat{Q}_T statistic</th>
<th>Order</th>
<th>\hat{Q}_T statistic</th>
<th>Order</th>
<th>\hat{Q}_T statistic</th>
<th>Order</th>
<th>\hat{Q}_T statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.2912*</td>
<td>5</td>
<td>1.6179</td>
<td>5</td>
<td>2.5101*</td>
<td>5</td>
<td>1.1036</td>
</tr>
<tr>
<td>10</td>
<td>3.6252*</td>
<td>10</td>
<td>1.5630</td>
<td>10</td>
<td>2.3412*</td>
<td>10</td>
<td>1.0553</td>
</tr>
<tr>
<td>25</td>
<td>2.8189*</td>
<td>25</td>
<td>1.4012</td>
<td>25</td>
<td>2.0516*</td>
<td>25</td>
<td>1.0523</td>
</tr>
<tr>
<td>50</td>
<td>2.3489*</td>
<td>50</td>
<td>1.2843</td>
<td>50</td>
<td>1.9224*</td>
<td>50</td>
<td>1.1748</td>
</tr>
</tbody>
</table>

Note: string vector containing the estimated statistic with its corresponding order. If the estimated statistic is outside the interval (0.809, 1.862), which is the 95 percent confidence interval for non long-memory, a star symbol * is displayed in the third column. The other critical values are in Lo's paper.

Table 4: Lobato and Robinson (1997) Tests

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>133 (a)</td>
<td>-14.30</td>
<td>22 (a)</td>
<td>-1.92</td>
<td>133 (a)</td>
<td>-4.05</td>
<td>19 (a)</td>
<td>0.34</td>
</tr>
<tr>
<td>150</td>
<td>-15.49</td>
<td>150</td>
<td>-4.93</td>
<td>150</td>
<td>-4.32</td>
<td>150</td>
<td>-4.93</td>
</tr>
<tr>
<td>200</td>
<td>-18.28</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>-4.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>-19.25</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td>-5.42</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: (a) Bandwidth given in Lobato and Robinson (1997).

Table 5: GPH Estimation of Fractional Integration Parameter

<table>
<thead>
<tr>
<th>$g(T)$</th>
<th>$T^{0.45}$</th>
<th>$T^{0.5}$</th>
<th>$T^{0.55}$</th>
<th>$T^{0.8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily absolute returns BVMT</td>
<td>-</td>
<td>0.12343</td>
<td>0.1147</td>
<td>0.1132</td>
</tr>
<tr>
<td>Weekly absolute returns BVMT</td>
<td>0.3452</td>
<td>0.3944</td>
<td>0.3809</td>
<td>-</td>
</tr>
<tr>
<td>Weekly absolute returns TUNINDEX</td>
<td>-</td>
<td>0.0878</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Daily absolute returns TUNINDEX</td>
<td>-</td>
<td>0.0297</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: $g(T)$ the number of periodogram ordinates; t-statistic of d are given in brackets. (-) non significant.

Table 6: Lo (1991) Tests

<table>
<thead>
<tr>
<th>m</th>
<th>BVMT Daily absolute returns</th>
<th>BVMT Weekly absolute returns</th>
<th>TUNINDEX Daily absolute returns</th>
<th>TUNINDEX Weekly absolute returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.1776</td>
<td>2.6179</td>
<td>0.41119</td>
<td>1.1036</td>
</tr>
<tr>
<td>10</td>
<td>2.2963</td>
<td>2.5630</td>
<td>0.44367</td>
<td>1.0553</td>
</tr>
<tr>
<td>25</td>
<td>2.6234</td>
<td>2.4012</td>
<td>0.57244</td>
<td>1.0523</td>
</tr>
<tr>
<td>50</td>
<td>2.8841</td>
<td>2.2843</td>
<td>0.57726</td>
<td>1.1748</td>
</tr>
</tbody>
</table>
Table 7: Robinson Tests

<table>
<thead>
<tr>
<th>BVMT</th>
<th>TUNINDEX</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily absolute returns</td>
<td>Weekly absolute returns</td>
<td>Daily absolute returns</td>
<td>Weekly absolute returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Bandwidth</td>
<td>q</td>
<td>d</td>
<td>Bandwidth</td>
<td>q</td>
</tr>
<tr>
<td>0.2672</td>
<td>250</td>
<td>0.5</td>
<td>0.0583</td>
<td>82</td>
<td>0.5</td>
</tr>
<tr>
<td>0.2427</td>
<td>250</td>
<td>0.7</td>
<td>0.1940</td>
<td>82</td>
<td>0.7</td>
</tr>
<tr>
<td>0.2380</td>
<td>500</td>
<td>0.5</td>
<td>0.0898</td>
<td>41</td>
<td>0.5</td>
</tr>
<tr>
<td>0.2310</td>
<td>500</td>
<td>0.7</td>
<td>0.0830</td>
<td>41</td>
<td>0.7</td>
</tr>
<tr>
<td>0.2419</td>
<td>750</td>
<td>0.5</td>
<td>0.1886</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>0.2546</td>
<td>750</td>
<td>0.7</td>
<td>0.0998</td>
<td>20</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Table 8: Whittle Semi-parametric Estimator of the Degree of Long Memory of Daily and Weekly Absolute Returns

<table>
<thead>
<tr>
<th>BVMT</th>
<th>TUNINDEX</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily absolute returns</td>
<td>Weekly absolute returns</td>
<td>Daily absolute returns</td>
<td>Weekly absolute returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Bandwidth</td>
<td>d</td>
<td>Bandwidth</td>
<td>d</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>0.3342</td>
<td>50</td>
<td>0.0876</td>
<td>50</td>
<td>0.1996</td>
<td>50</td>
</tr>
<tr>
<td>0.3441</td>
<td>100</td>
<td>0.1197</td>
<td>100</td>
<td>0.1841</td>
<td>100</td>
</tr>
<tr>
<td>0.3171</td>
<td>150</td>
<td>0.2232</td>
<td>150</td>
<td>0.1362</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 9: Estimates for FIGARCH(1,d,1) model for TSE weekly and daily volatility Using Broyden, Fletcher, Goldfrab and Shanno (BFGS) Maximization Method

<table>
<thead>
<tr>
<th>BVMT</th>
<th>TUNINDEX</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily absolute returns</td>
<td>Weekly absolute returns</td>
<td>Daily absolute returns</td>
<td>Weekly absolute returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_0</td>
<td>0.01055</td>
<td>0.00903</td>
<td>0.02311</td>
<td>0.0121</td>
<td></td>
</tr>
<tr>
<td>α_1</td>
<td>(-1.97711)**</td>
<td>(2.0112)**</td>
<td>(1.4561)</td>
<td>(-1.1113)</td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>0.87184</td>
<td>0.66121</td>
<td>0.42131</td>
<td>0.33427</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>(7.3629)**</td>
<td>(5.3124)**</td>
<td>(3.3211)**</td>
<td>(2.0278)**</td>
<td></td>
</tr>
<tr>
<td>$l(\phi)$</td>
<td>851.841</td>
<td>546.125</td>
<td>243.121</td>
<td>311.342</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.9902</td>
<td>1.002</td>
<td>0.9980</td>
<td>1.0001</td>
<td></td>
</tr>
</tbody>
</table>

Notes: *** Significant at 1 percent, ** significant at 5 percent, * significant at 10 percent.