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Abstract 

 

This study investigates economic growth convergence within the MENA region using a spatial 

econometric approach. The empirical findings reveal that environmental factors significantly 

influence the convergence process. Growth convergence appears to be shaped not only by each 

country’s idiosyncratic characteristics but also by environmental feedback effects from 

neighboring countries and the intensity of ecological spillovers. These spillovers are not limited to 

immediate (first-order) or contiguous neighbors; they also extend to higher-order neighbors and 

may ultimately impact the entire region. 

 

 

Keywords: Growth convergence, Spillover effects; Spatial models; Climate change. 

JEL Classifications: O47, D62, C31, Q54. 

 

 ملخص 

ق الأوسط وشمال أفريقيا باستخدام نهج القياس الاقتصادي   ي منطقة الشر
ي تقارب النمو الاقتصادي ف 

تبحث هذه الدراسة ف 

. تكشف النتائج التجريبية أن العوامل البيئية تؤثر بشكل كبير على عملية التقارب. ويبدو أن تقارب النمو لا يتشكل فقط   ي
المكان 

ات التغذية الراجعة البيئية من الدول المجاورة وكثافة التداعيات من خلال الخصائص الفريدة لكل ب ا من خلال تأثير
ً
لد، بل أيض

ا إلى دول  
ً
أيض تمتد  المتجاورة؛ بل  أو  الدرجة الأولى(  ة )من  المباشر المجاورة  الدول  التداعيات على  البيئية. ولا تقتصر هذه 

ي نهاية المطاف على 
  المنطقة بأكملها. مجاورة من الدرجة الأعلى، وقد تؤثر ف 
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1. Introduction 

 

Exploring the concepts of economic growth and income convergence3 in the context of climate 

change is a prominent and widely debated issue. This debate is especially relevant to the MENA 

region, which has been severely cursed by recurrent chaotic events—some of extreme violence—

including internal and external conflicts, economic crises, population displacement, and natural 

disasters. The interconnection of these economies, combined with the shocks associated with such 

events, necessitates a holistic and ambitious analysis to understand the underlying logic behind the 

region’s chronic economic lethargy despite its abundant human and natural resources. Some 

primary queries arise from both environmental and economic perspectives. First, will climate 

factors raise the convergence speed across the MENA region or will they instead exacerbate 

regional disparities? Second, to what extent do spatial factors shape the development trajectories 

of MENA countries? Third, do neighboring countries with similar environmental factors converge 

faster? Finally, are there spillover effects within the region, and if so, what kinds are they and how 

far do they extend geographically? 

 

This exploratory spatial and ecological analysis investigates the spatial correlation between MENA 

economies in terms of economic convergence while accounting for the potentially significant 

influence of ecological factors. The contribution of this study is twofold. First, it examines the 

impact of environmental degradation and climate change on economic growth convergence, 

thereby addressing a notable gap in the empirical literature on the MENA region. Second, it 

implements various spatial models and techniques to improve upon previous studies by explicitly 

considering spatial interdependence as a source of externalities that may spill over to neighboring 

or even distant countries. To this end, a panel dataset covering 18 MENA countries over the period 

1996-2019 is constructed to explore the aforementioned questions. 

 

2. Economic growth-ecological footprint nexus: why does spatial analysis matter? 

 

Lesage (2010, p.20) states that “spatial econometrics is a field whose analytical techniques are 

designed to incorporate dependence among observations (regions or points in space) that are in 

close geographical proximity. Extending the standard linear regression model, spatial methods 

identify cohorts of ‘nearest neighbors’ and allow for dependence between these 

regions/observations.” Indeed, a spatial econometric framework represents a promising approach 

to address the importance of territorial interdependencies in the context of both economic growth 

and environmental issues. In reality, what happens in one country is likely to directly or indirectly 

affect others—whether neighboring or more distant—through various transmission channels. 

 
3 Broadly speaking, the economic convergence theory postulates that all economies will eventually converge in terms 

of per-capita output. Accordingly, economic divergence occurs when we observe an income growth differential 

between a sample of countries and a list of benchmark countries. Baumol (1986), Barro and Sala-I Martin (1997), Lee 

et al. (1997), Bernard and Durlauf (1995), and Luginbul and Koopman (2004) have meaningfully shaped the economic 

convergence analysis. 
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The restrictive Ordinary Least Squares (OLS) assumption of independence among observational 

units may lead to serious misspecification problems, resulting in biased and inconsistent 

coefficient estimates. Another relevant point to emphasize is the difficulty in properly detecting and 

measuring spillover effects. While these externalities are recognized within the OLS framework, 

they are rarely quantified due to its technical limitations. Spatial econometric models are 

specifically designed to address this shortcoming. Therefore, in the presence of geographical 

interactions, spatial models offer a promising alternative to OLS (or non-spatial regressions) by 

explicitly accounting for spatial autocorrelation affecting both dependent and explanatory 

variables (LeSage and Pace, 2009). 

 

In recent years, spatial effects have been increasingly recognized as a key factor in the process of 

economic convergence (Rey and Montouri, 1999). Global income distribution is not uniform; 

wealthy countries and fast-growing economies tend to be geographically clustered—i.e., located 

near one another. This is implicitly revealed in Figure 1, where the concentration of similar color 

tones in regions such as Asia, Europe, and the Americas presumes the presence of a positive spatial 

correlation in GDP per capita growth at the continental level. Figure 1 clearly indicates that clusters 

of countries tend to exhibit similar levels of GDP per capita growth, with darker tones representing 

higher values and lighter tones representing lower ones. A key benefit of spatial econometrics lies 

in its ability to ascertain whether this phenomenon is driven by an underlying spatial structure or 

arises merely by chance. Determining whether there is a definite logic or simply a random 

coincidence behind such a phenomenon is one of the key advantages of using spatial 

econometrics. Nevertheless, it is important to recognize that spatial interdependence plays a 

significant role in the context of economic growth (Tian and Chen, 2010). There appears to be a shadow 

growth effect—growth spillovers originating from other countries—that should be taken into account 

when examining economic convergence. For instance, over the past decade, a stream of empirical 

research on economic convergence has demonstrated the importance of accounting for spatial 

dependence. It is crucial to emphasize that neglecting spatial interactions can lead to serious model 

misspecifications. Income growth and economic convergence in one country do not depend solely on 

its own conditions but are also influenced by those prevailing in other countries. Space, in fact, is not 

composed of units isolated from each other. What happens in each of them can influence others; in other 

words, there is spatial interaction (Jayet, 1993). 

 

The disparities in economic growth depicted in Figure 1 stand in stark contrast to the neoclassical theory 

of absolute convergence. Empirical evidence suggests that significant economic differences persist, with 

less developed countries neither attaining the same steady state growth rates nor catching up to the 

income levels of developed nations. In fact, it is imperative to consider alternative theoretical 

frameworks beyond the often-contested and overly simplistic assumption of absolute convergence. 
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Figure 1. Panorama of the GDP/Capita growth in the world (period average: 1996-2019, 143 

countries) 

 

Source: Authors’ calculation using World Bank data. 

 

3. The empirical work 

 

To estimate the convergence of GDP per capita determinants in the MENA region, we use a dataset 

of 18 economies4 over the period 1996-2019. The time frame and countries are selected to supply 

both balanced panel data and a rather large sample size dataset to properly run the spatial 

regressions. Data are collected from the Penn World Table database (PWT.10.01) from the 

University of California and the University of Groningen,5 the World Bank (World Development 

Indicators and the Worldwide Governance Indicator), and the International Monetary Fund.  

 

3.1. The OLS regression results 

 

As a first step, we estimate the basic Solow model using the OLS [Eq.1], serving as a benchmark 

for testing absolute convergence (Table 1). We then extend the analysis by conducting spatial 

regressions based on an augmented Solow specification, which includes additional economic and 

environmental idiosyncratic covariates to align with the spirit of conditional convergence. 

 
4 Algeria, Bahrain, Egypt, Jordan, Kuwait, Iran, Libya, Oman, Mauritania, Morocco, Qatar, Saudi Arabia, Sudan, Syria, 

Tunisia, Turkey, and the United Arab Emirates. 
5 Feenstra, R. C., Inklaar, R., and Timmer, M. P. (2015). The Next Generation of the Penn World Table. American 

Economic Review, 105(10), 3150-3182, available for download at: www.ggdc.net/pwt. 

 

https://www.rug.nl/ggdc/productivity/pwt/related-research
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Hence, in the second step, we regress the growth of real GDP per capita 

  on the following variables: the initial real GDP per capita6 

[per capita GDP of the year 1996: 𝐺DP/𝐶ap1996]; the capital stock (CapStock), which serves as a 

proxy of the physical capital accumulation; and the sum of population growth, technology growth 

rate, and capital depreciation rate (NGD)7 [NGD= (𝑛𝑛 + 𝑔𝑔 + 𝛿𝛿)].8 In addition, the variable 

natural resource endowment (ResEndow), 9  approximated by total natural resource rents 

(percentage of GDP), is included in the estimation. The environmental regressors (retrieved from 

the IMF online database)10 cover carbon dioxide emissions (CO2) in kiloton (kt) as a proxy of 

environmental pollution, and the annual sum of natural climate disasters (measured by the combined 

frequency of droughts, extreme temperatures, floods, landslides, storms, and wildfires). Except for 

the governance variable (Gov)11  and the natural disaster indicator (NatDisaster), all the other 

variables are expressed in logarithm. 

 

Table 1. OLS estimates of the β-convergence regression of per-capita income in the MENA 

region, period: 1996-2019 
 (1) 

Variables Gr 

GDP/Cap1996 -0.371*** 

 (-2.579) 

Constant 3.849*** 

 (2.836) 

Observations 432 

Number of id R-sq 18 

0.17 

Notes: Robust z-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

The OLS results12 indicate that the coefficient of 𝛽𝛽-convergence for the entire period is highly 

significant with the expected negative sign, confirming the presence of convergence over the years 

 
6 At constant 2017 national prices (in mil. 2017US$). 
7 Following the economic growth literature, 𝑔𝑔 + 𝛿𝛿 is supposed to be equal to 0.05. 
8 GDP/cap, ck, 𝑛𝑛, 𝛿𝛿 are extracted from PWT.10.01. 
9 WDI 
10 https://climatedata.imf.org/ 
11 Measured as the average of five governance indicators: Voice and Accountability, Political Stability and Absence 

of Violence/Terrorism, Government Effectiveness, Regulatory Quality, Rule of Law and Control of Corruption, 

ranging from -2.5 (weak) and 2.5 (strong) performance. 
12 Based on the absolute convergence hypothesis since the regression equation does not include explanatory variables 

measuring the countries characteristics. 

https://climatedata.imf.org/
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1996-2019. The negative coefficient of initial per capita GDP aligns with the theoretical prediction 

of growth convergence: poorer countries tend to grow faster than richer ones. The estimated value 

of -0.371 implies an annual rate of convergence of approximately 1.9 percent, corresponding to a 

half-life of 38.48 years.13  

 

Table 2. OLS Estimation of the determinants of conditional convergence in MENA18 period: 

1996-2019 
 (1) 

Variables Gr 

GDP/Cap1996 -1.011*** 

 (-7.237) 

CapStock -0.125** 

 (-2.255) 

NGD 0.440** 

 (2.175) 

ResEndow 0.183*** 

 (5.311) 

CO2 2.352*** 

 (4.002) 

CO2sq -0.0880*** 

 (-3.161) 

NatDisaster -0.0605** 

 (-2.193) 

GOV 0.656*** 

 (4.511) 

Constant -2.513 

 (-0.749) 

Observations 432 

Number of id 18 

R2 0.23 

Notes: statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

The OLS conditional convergence results (see Table 2), which incorporate both economic and 

ecological factors, support the convergence hypothesis, as evidenced by the negative coefficient of 

initial GDP per capita. Moreover, resource endowment, CO₂ emissions, and governance exhibit 

positive and statistically significant effects at the one percent level. The NGD variable also shows 

a positive effect, although significant only at the five percent level. In contrast, the squared term 

of CO₂ emissions (CO2sq), capital stock, and natural disasters display significant negative impacts 

on growth convergence in the MENA region. Specifically, both natural disasters and capital stock 

have significant detrimental effects on convergence (at the five percent level), while the negative 

effect of CO2sq is highly significant at the one percent level.14  

 

 

 

 

13  
14 Further information on this point is provided in the findings of the spatial regression later on. 
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3.2. The spatial econometric regressions 

 

Broadly speaking, four popular spatial models are widely used in applied research: the Spatial Lag 

Model or Spatial Autoregressive Model (SAR), the Spatial Error Model (SEM), the SAC model 

(also known as SARAR or the Cliff-Ord model), and the Spatial Durbin Model (SDM). The Spatial 

Lag or SAR model [Eq.2] posits that the level of the dependent variable y depends on the levels of 

y in neighboring units, as captured by the spatial weights matrix W and represented by the term 𝜌𝑊𝑦. 

 

In the Spatial Error Model (SEM) [Eq.3], the spatial influence arises exclusively through the error 

term, specified as terms 𝜇 = 𝜆𝑊𝜇 + 𝜀, and it is not suitable for detecting spillover effects. The SAC 

model [Eq.4] is a mixed spatial autoregressive specification that includes both endogenous 

interactions among the dependent variable (𝑊y) and autoregressive disturbances (𝜆𝑊𝜇.). If 𝜆 = 0, the 

model simplifies to the SDM [Eq.5], which incorporates the lagged dependent variable (𝜌𝑊𝑦, often 

reported as “Rho” in regression tables) as well as spatially related residuals. Compared to the SEM, 

the SDM additionally includes spatially lagged independent variables, expressed as 𝑊X, thereby 

capturing the potential spatial spillover effects of covariates. 

 

 

 

3.2.1. The space configuration 

In order to run spatial econometric regressions, a spatial weights matrix must be specified. This 

matrix defines the spatial structure and parameterizes the potential interactions between pairs of 

observations (countries), denoted by 𝑖, 𝑗. The positive and symmetric 𝑛 × 𝑛 spatial weights matrix15 

is composed of elements 𝑊i,𝑗 at location 𝑖, 𝑗 that capture the degree of interaction between locations 

𝑖 and 𝑗 By convention, the diagonal elements are set to zero (Wi, j = 0), indicating that a location 

cannot be its own neighbor. 

 

 

A variety of techniques are available to define the structure of the spatial weight matrix, which 

reflects the spatial relationships between observational units. One common approach is contiguity-

 
15 𝑛 is the number of spatial units. 
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based weighting, where spatial units that share a common boundary or vertex are considered 

neighbors.16 An alternative is to use an inverse distance or a threshold distance.17 Another popular 

method is the k-nearest neighbors’ approach, where each spatial unit is assigned a fixed number 

(k) of the closest units as neighbors, regardless of the actual distance. In this study we use an 

inverse distance relating a primitive and canonical 

principle of geographic law described concisely by Tobler (1970, p.236)18 “Everything is related 

to everything else, but near things are more related than distant things.” Also, a contiguity matrix is 

applied on some regressions for robustness checks. 

 

3.2.2. Completing the growth convergence equation with the spatial model 

To implement the spatial regression models, we follow Tian et al. (2010), Fingleton and López-

Bazo (2006), Arbia (2006), and Kubi and Schneider (2016), who adapt and extend the Cobb-

Douglas production function to incorporate spatial dependence. In line with the Marshallian 

literature, which distinguishes between two types of externalities—technological and pecuniary—

the authors argue that the primary source of spatial effects arises from externalities generated 

through regional interactions. These interactions manifest in the form of knowledge spillovers, 

factor mobility, and trade linkages, all of which contribute to interregional growth dynamics. 

 

The Solow Cobb-Douglas equation proposed by the authors is a classical constant return to scale 

function taking the following form: 

 

 

Where y𝑙(𝑡), 𝐴i (𝑡), 𝐾i (𝑡) and 𝐿i (𝑡) represent, respectively, the output, aggregated level of technology, 

capital, and labor in region i and time t, while ∝ is a parameter representing the capital elasticity. 

 

After the rearrangement, we obtain the Spatial Durbin Model of the augmented Solow function 

expressed by the following equation: 

 

 

 
16 𝑖, 𝑗 locations interact when they are contiguous, i.e., sharing a common border. Then, we obtain a binary matrix with 

value 0 (countries are not contiguous) and 1 (countries are contiguous). We distinguish Rook contiguity (defines 

neighbors as those sharing a common edge) and Queen contiguity (is more inclusive and defines neighbors as those 

sharing either an edge or a vertex). 
17 𝑖, 𝑗 locations interact when being within a critical distance band. 
18 Tobler, W. (1979). Cellular Geography.” In Philosophy in Geography, edited by S. Gale and G. Olsson, pp. 579-86. 

Dordrecht: Reidel. Cited in Anselin (1988, p.8). 
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Where, 𝐺𝑟 𝑊𝑙 , 𝑊X𝑙, and 𝜌𝑊𝐺𝑟 represent, respectively, the dependent variable, the selected 

independent variables (GDP/Cap1996, 𝐶apStock, 𝑁𝐺D, ResEndow, CO2, CO2sq, and NatDisaster), and 

the spatially lagged independent variables (preceded by the weighted matrix W, and the spatially 

dependent variable (𝜌𝑊𝐺𝑟).
19 

 

3.2.3. The selection of the spatial model and the regression results 

We estimate several spatial regression models using the maximum likelihood (ML) method, which 

is widely regarded as appropriate for handling spatial dependence in econometric models. In the 

case of the spatial lag model (SAR), applying the OLS leads to biased and inconsistent estimates 

due to endogeneity. Specifically, the inclusion of the spatially lagged dependent variable 

introduces a simultaneity bias, as this lag is correlated with the error term (Anselin, 1988; Elhorst, 

2014). The ML estimator corrects for this endogeneity by jointly estimating the spatial parameter 

and the regression coefficients, thus producing consistent and efficient estimates. 

 

In contrast, in the spatial error model (SEM), the spatial dependence enters through the error term 

rather than the dependent variable. In this case, the OLS estimates of the regression coefficients 

are still unbiased, but they are inefficient because the standard errors are misestimated due to the 

violation of the Gauss-Markov assumption of independently distributed errors (LeSage and Pace, 

2009). The ML estimation improves efficiency by explicitly modeling the spatial autocorrelation 

in the error structure. 

 

Given the existence of a plethora of spatial models, we run some tests to detect the spatial model 

with the best goodness-of-fit. As proposed by Belotti et al. (2017), we start by regressing the most 

general specification of our model, namely the SDM. In the second step, to test the spatial 

autoregressive model (SAR) specification, we check econometrically whether the parameters are 

𝜌 ≠ 0 and  = 0. Then, we test the specification of a spatial error model (SEM) by examining if 

=−𝛽𝜌. Next, we use the Akaike information criterion (AIC) to evaluate the specification of the 

SDM with an autoregressive disturbance model (SAC).20 Based on the estimation tests, we find 

that the best model is the dynamic SDM (DSDM). The specification tests between the SDM and 

SAR models, as well as between the SDM and SEM models, reject the null hypothesis at the one 

percent significance level, thereby favoring the SDM in both cases. Subsequently, we compare the 

information criteria of the SAC and the SDM, with the SDM displaying lower values of AIC.21 

 
19 Formally this can be expressed by the following equation: Gr = β0 + β1 GDP/Cap1996 + β2CapStock + β3NGD + 

β4ResEndow + β5CO2 + β6CO2sq + β7NatDisaster + β8GOV + θ1GDP/Cap1996 + θ2WCapStock + θ3WNGD + 

θ4WResEndow + θ5WCO2 + θ6WCO2sq + +θ7WNatDisaster+θ8WGOV + ρWGr+𝜀𝜀. 
20 Since the SAC and SDM are non-nested, we can rely on information criteria to test whether the most fitting model 

is the SDM or the SAC model. In this empirical work, the Akaike’s information criterion favors the SDM compared 

to the SAC model (see Table 6 in the Appendix). 
21 For more details, see Table 5 and Table 6 in the Appendix. 
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Henceforward, we find that the DSDM provides goodness-of-fit. Furthermore, the potential bias 

caused by the omitted variables may be corrected using this model (LeSage and Pace, 2010). 

 

According to the econometric estimations, the coefficient of initial GDP per capita is negative and 

statistically significant at the one percent level across all estimated models. This result provides 

strong evidence in support of the growth convergence hypothesis. In addition, the regression 

results indicate that the variable NGD—defined as the sum of the population growth rate, 

technological progress, and the capital depreciation rate—contributes positively and significantly 

to growth convergence, with statistical significance at the one percent level. However, this result is 

not confirmed in the SAR models, whether using the contiguity-based spatial weight matrix or the 

inverse distance matrix. Nevertheless, the results from the spatial dynamic model indicate that this 

variable contributes strongly and positively to the growth convergence process in the MENA 

region, with statistical significance at the one percent conventional level. At the same significance 

level (one percent), the results from the SDM suggest that physical capital accumulation contributes 

to growth divergence in the MENA region. In contrast, this variable is not statistically significant 

in the SAR model. Resource endowment and governance indicators, however, support the growth 

convergence process, a finding that holds true across both the SAR and dynamic SDM models. 

Environmental factors—particularly air pollution—have a significant impact on the MENA 

region’s growth convergence trajectory, as evidenced by both the SAR and dynamic SDM 

regression results. 

 

The indicator of natural disasters—measured by the incidence of droughts, extreme temperatures, 

floods, landslides, storms, and wildfires—is found to be statistically significant and negative at the 

five percent level in the SAR model, but it is not significant in the DSDM. According to the SAR 

model, the occurrence of natural disasters increases disparities among MENA countries. This may 

be explained by the varying intensity of shocks and the heterogeneous capacity of countries to 

absorb and manage these events, which can create or exacerbate development gaps across the 

region. 
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Table 3. SAR estimation of the impact of climate change on growth convergence in MENA18  
Model 1: Contiguity Weighted Matrix  Model 2: Inverse Distance Weighted Matrix  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Variables Main Spatial Variance LR_Direct LR_Indirect LR_Total Main Spatial Variance LR_Direct LR_Indirect LR_Total 

 

GDP/Cap1996 

 

-0.999*** 

   

-1.044*** 

 

-0.437*** 

 

-1.481*** 

 

-1.029*** 

   

-1.039*** 

 

-0.562** 

 

-1.601*** 

 (-5.613)   (-5.398) (-3.751) (-5.057) (-5.729)   (-5.519) (-2.144) (-4.109) 
CapStock -0.0805   -0.0869* -0.0358 -0.123* -0.130**   -0.135** -0.0724* -0.207** 

 (-1.547)   (-1.650) (-1.614) (-1.658) (-2.377)   (-2.506) (-1.716) (-2.360) 

NGD 0.282   0.317* 0.131 0.449* 0.271   0.297 0.152 0.449 
 (1.529)   (1.713) (1.630) (1.708) (1.366)   (1.543) (1.246) (1.509) 

ResEndow 0.194***   0.203*** 0.0844*** 0.287*** 0.189***   0.191*** 0.101** 0.292*** 

 (5.281)   (5.486) (4.167) (5.389) (4.780)   (4.969) (2.404) (4.517) 
CO2 2.348***   2.459*** 1.028*** 3.487*** 2.079***   2.104*** 1.111** 3.215*** 

 (4.139)   (4.307) (3.441) (4.186) (3.425)   (3.578) (2.159) (3.375) 

CO2sq -0.0896***   -0.0936*** -0.0391*** -0.133*** -0.0715**   -0.0720** -0.0376* -0.110** 
 (-3.334)   (-3.407) (-2.911) (-3.341) (-2.483)   (-2.541) (-1.872) (-2.499) 

NatDisaster -0.0361   -0.0376 -0.0156 -0.0532 -0.0540**   -0.0545* -0.0293 -0.0838* 

 (-1.454)   (-1.391) (-1.351) (-1.391) (-2.042)   (-1.958) (-1.469) (-1.870) 
GOV 0.786***   0.815*** 0.343*** 1.158*** 0.695***   0.695*** 0.380* 1.076*** 

 (5.607)   (5.576) (3.516) (4.973) (4.705)   (4.704) (1.934) (3.464) 

Rho  0.326***    0.346***   
  (7.879)    (3.889)   

lgt_theta   -1.843***     -1.765***   

   (-8.353)     (-7.804)   
sigma2_e   0.265***     0.302***   

   (14.08)     (14.24)   

Constant -3.397   -1.748   
 (-0.999)   (-0.489)   

Observations 432      

R-squared 0.258      
Number of id 18      

Notes: (W: Contiguity and Inverse Distance) Period: 1996-2019, (Blue color: Spatial indicators, LR: Long-run spillovers). z-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. The effect of climate change on growth convergence in MENA18: A dynamic SDM model estimation 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Variables Main Wx Spatial Variance SR_Direct SR_Indirect SR_Total LR_Direct LR_Indirect LR_Total 

 

L.Gr 

 

0.881*** 

         

 (44.91)          
L.WGr -0.00123          

 (-0.00702)          

GDP/Cap1996 0 0   0.00341 -0.00196 0.00146 2.802 -2.799 0.00289 
 (omitted) (omitted)   (0.111) (-0.0883) (0.0520) (0.0502) (-0.0502) (0.0487) 

CapStock -0.0195 0.365***   -0.0485 0.253*** 0.205*** -9.809 10.24 0.431*** 

 (-0.643) (7.483)   (-1.478) (5.819) (5.592) (-0.0382) (0.0399) (3.833) 

NGD 0.0528 0.597***   0.0106 0.365*** 0.375*** -15.98 16.77 0.786*** 

 (0.653) (3.679)   (0.138) (3.587) (3.150) (-0.0360) (0.0378) (2.814) 

ResEndow 0.0362** -0.0357   0.0408** -0.0391* 0.00164 1.936 -1.933 0.00311 
 (1.978) (-1.163)   (2.210) (-1.802) (0.0768) (0.0367) (-0.0366) (0.0683) 

CO2 5.330*** 8.848***   4.849*** 3.435*** 8.284*** 13.98 3.435 17.41*** 

 (15.29) (17.46)   (14.43) (4.583) (10.05) (0.0198) (0.00487) (4.941) 
CO2sq -0.256*** -0.461***   -0.230*** -0.189*** -0.419*** 0.0925 -0.973 -0.881*** 

 (-14.42) (-18.02)   (-13.94) (-5.038) (-10.11) (0.00176) (-0.0185) (-4.959) 

Natdisaster 0.00587 0.0104   0.00606 0.00474 0.0108 0.0669 -0.0443 0.0226 
 (0.580) (0.805)   (0.591) (0.469) (1.095) (0.0335) (-0.0222) (1.046) 

GOV 0.753*** 1.322***   0.682*** 0.533*** 1.215*** -1.660 4.214 2.554*** 

 (9.964) (11.87)   (9.238) (4.312) (8.801) (-0.0116) (0.0295) (4.711) 

Rho   0.731***       

   (4.646)       
sigma2_e    0.0371***      

    (15.20)      

 

Observations 
 

414 
        

R-squared 0.172         

Number of id 18         

Notes: Blue color: Spatial Indicators L.Gr: Tme-Lagged Dependent Variable, L.WGr: Spatial-Time-Lagged Dependent; Wx: Spatial lagged Independent Variable, LR: Long-Run 

spillovers, SR: Short-Run spillovers, z-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Regarding environmental degradation, CO₂ emissions are used as a proxy for air pollution. The 

regression results from both the SAR and DSDM models reveal a nonlinear (inverted U-shaped) 

relationship between air quality degradation and economic growth. Specifically, CO₂ emissions are 

associated with improved growth convergence, as indicated by a positive and statistically 

significant coefficient at the one percent level, while the square of CO₂ emissions shows a negative 

and significant effect (also at the one percent level), confirming the inverted U-shape. This suggests 

that the relationship between economic growth and environmental quality is complex, involving 

bidirectional causality and feedback loops. Increases (or decreases) in one variable tend to 

influence the other. These findings are consistent with previous empirical studies that have 

identified various nonlinear relationships, including N-shaped, U-shaped, and inverted U-shaped 

patterns. One plausible explanation for these discrepancies is the wide diversity of covariates and 

modeling techniques employed in the econometric analyses. 

 

Spatial regression models capture the complex interdependence between observational units—in 

this case, countries. A change in an explanatory variable in one country can affect not only that 

country directly but also others indirectly. This structure implies the presence of total marginal 

effects, which can be decomposed into direct effects (or feedback effects) and indirect effects 

(spillovers). The direct effect measures the impact of a change in the growth convergence covariate 

on the dependent variable within the same country. In contrast, the indirect effect captures how a 

change in that covariate influences growth convergence in neighboring countries. The variables 

reflecting spatial dependence—particularly the 𝑅𝑅ℎ𝑐𝑐 coefficient (𝜌𝜌) and spatially weighted 

explanatory variables (𝑊𝑊𝑥𝑥)—are key components of the SAR and DSDM models. The 

estimation results from both models reveal a positive feedback effect of economic growth in the 

MENA region, indicating that spatial dependence fosters convergence toward a steady-state 

growth path across countries. 

 

The SDM, which nests the SAR model, includes both the spatially lagged dependent variable 

(𝜌W𝐺𝑟𝑟 or 𝑅ℎo) and the spatial lags of the explanatory variables (𝑊𝑥). The advantage of the DSDM 

over SAR and other spatial models lies in its ability to disaggregate total marginal effects into short-

term direct and indirect components. The DSDM results point to the existence of short-term 

positive spillover effects in the MENA region, particularly through variables such as physical 

capital accumulation (CapStock), NGD, CO₂ emissions, and governance (GOV). However, 

variables such as the square of CO₂ emissions (CO2sq) and resource endowment (ResEndow) are 

associated with short-term negative spillovers, suggesting potential externalities or diminishing 

returns. Notably, the DSDM did not reveal any statistically significant long-term spillover effects. 
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4. Conclusion 

 

This study aims to examine economic growth convergence within the MENA region through the 

lens of a spatial econometric framework. The empirical findings highlight that environmental 

factors play a significant role in the convergence process. This process is influenced not only by 

the idiosyncratic characteristics of each country but also by neighboring countries’ feedback effects 

and substantive spillovers, both positive and negative, as captured by the spatially lagged variables 

(𝜌𝑊𝐺𝑟 and 𝑊𝑥). Moreover, the environmental impacts are both direct and indirect, transmitted 

through various spatial mechanisms. These spillover effects are global in scope; they are not 

confined to immediate or first-order neighbors but extend to higher-order neighbors and may affect 

the entire MENA region. This has important policy implications. 

 

Policymakers should adopt a proactive and regionally coordinated strategy to amplify the positive 

externalities while mitigating negative ones. Given the broad geographic extent of environmental 

spillovers, both environmental policy and economic growth strategies must be approached from a 

regional and global perspective. Enhanced regional cooperation and sustained commitment to 

environmental protection represent a win-win strategy to promote a more inclusive and 

environmentally sustainable growth trajectory. 
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Appendix  

 

Table 5. Specification tests for spatial model selection 
SAR Test SEM Test 

(1) [Wx]GDP/Cap1996 - [Wx]CapStock = 0 

(2) [Wx]GDP/Cap1996 - [Wx]NGD = 0 

(3) [Wx]GDP/Cap1996 - [Wx]ResEndow = 0 

(4) [Wx]GDP/Cap1996 - [Wx] CO2 = 0 

(5) [Wx]GDP/Cap1996 - [Wx]CO2sq = 0 

(6) [Wx]GDP/Cap1996 - [Wx] Nat_Disaster = 0 

(7) [Wx]GDP/Cap1996 - [Wx] GOV = 0 

(8) [Wx]GDP/Cap1996 = 0 

(1) [Wx]ln_cn = -[Spatial]rho*[Main]CapStock 

(2) [Wx]lnNGD = -[Spatial]rho*[Main]NGD 

(3) [Wx]ln_ResEndow = -[Spatial]rho*[Main]ResEndow 

(4) [Wx]ln_co2kt = -[Spatial]rho*[Main]CO2 

(5) [Wx]ln_co2ktsq = -[Spatial]rho*[Main]CO2sq 

(6) [Wx]disaster_total = -[Spatial]rho*[Main]Nat_Disaster 

(7) [Wx]gov = -[Spatial]rho*[Main] GOV 

Chi2(8) = 141.03 Prob > chi2 = 0.0000 Chi2(7) = 136.29 Prob > chi2 = 0.0000 

 

 

Table 6. Akaike’s information criterion 
Model Obs ll(model) df AIC 

SDM 432 -329.0055 20 7085.797 

SAC 432 -340.9169 10 7094.223 

 

 


