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Abstract 

 

Energy poverty across the Middle East and North Africa leads to health and growth hazards for 

millions of children, who are exposed and vulnerable to poor climate conditions at home. These 

hazards are heightened by the increasing occurrence of extreme temperature and precipitation 

events, as children become even more exposed and their organisms even more vulnerable to indoor 

climate conditions. This paper investigates the nexus between indoor and outdoor climate 

conditions, on the one hand, and children’s anthropometric development (stunting, wasting) and 

mortality (neonatal and infant), on the other hand. Children’s access to clean energy is gauged 

using a Multidimensional Energy Poverty Index or a principal component analysis score of 

households’ connection to electricity, and usage of clean fuels and cooking facilities. High-

resolution temperature data are matched to households at the level of provinces. The analysis is 

applied to household-level microdata from 22 health surveys across ten MENA developing 

countries, and trends over time are assessed. We find that energy poverty has positive effects on 

longer-term anthropometric growth (i.e., risk of stunting) across most countries, but the effects on 

shorter-term or more acute health indicators, including wasting and mortality, are limited. Energy 

poverty is associated with stunting particularly in Morocco, Mauritania, Palestine and Tunisia. It 

is also modestly associated with infant mortality, especially in Morocco, Tunisia and Turkey. Girls, 

and children of wealthier, more educated parents in urban areas face lower stunting, wasting and 

mortality risks in most countries. These results underscore the necessity for targeted gender-

responsive policies addressing energy poverty and climate resilience to improve child health 

outcomes in the region. 
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 ملخص 

 

ط اشماررررررق م ررررررما  حفة قنا حل لاياخر اررررررحنة منم  لمظيوف  اشخيا  الم ر رررررروف  ل رم  لا ا نة   ي جميع أنحاء الشررررررس
يؤدي فقر الطاقة ف 

ي لا اهل. و مفاياق  ه ا المياخر ببررزا ف ا   
ي   الماطرفةح اث اش   اررة ة ف 

أكثر عر ررة  ، حنث  صرر ا اشخيا  درجات الحرارة ماشلاطار  ف 

ي   م  لاث  ي ال ظقرررة يوف  ال رم  الم رررا نرررة الررر ا منرررة ماليرررارجنرررة، لا  ج.رررة، مال م  اشنثر
و فهحرررث هررر ا ال رقرررة ف  ل رم  الم رررال الررر ا حي

ي ال لادة مالر رررررع(، لا  ج.ة أ رمو يا  قنال ماررررر   اشخيا  حل الطاقة ال  نية  ااررررراي ام 
للأخيا  )الاق م مال. ا ( مال فنات )ح يثر

و  لاؤشس فق ر الطاقة لاا  د اش  اد أم درجة فحمنل المك نات الرئيبررررنة لا اررررنل اشش  الا.ة اء ماارررراي ام ال ق د ال  نه ملاراف  الط ي

فا  لاطا قة ينانات درجة الحرارة عالنة ال قة لاع اشش عح لابا م المحاف اتو يا  فط ي  الاحمنل عح ال نانات الج ئنة عح لابا م  

ا   22اششة لا    ط اشمارررق م رررما  حفة قنا، م ا  فقين  الافجاهات  مرمر ال ق لابرررح  ي لا طقة الشرررس
ي عشرررس دم  نالانة ف 

ا ف  مج نا    .ارررحن 

ات  ي لا    الهمررر ان، حلا أن بيرررارا عح المؤشس
ي خل رررل اشجرررل )أي  طر الاق م( ف  م  لاث  أن فقر الطررراقرررة لرررج بيرررار ح جررراينرررة عح ال م  اشنثر

ي الم ر  ملا ر ااننا  
ي يلت ال. ا  مال فنات، لاح مدةو يرفهق فقر الطاقة  الاق م، لا اررررررررنما ف 

ة اشجل أم اشكثر ح ة،  ما ف  الصررررررررحنة قصررررررررثف

ي الم ر  مف ا  مفر ناو ف اجج اليانات مأخيا  ا  اء اشكثر يراء  م 
ا ي فنات الر ررررررع، لا اررررررنما ف 

 
ا خيني

 
  فمبررررررطوف  مف ا و تما يرفهق ارفهاخ

مرة م ررع اررنااررات لا ج.ة   ي لا    الهم انو فؤ   ه ا ال اائع عح و 
ي الم اخ  الحضرر  ة لاياخر أقل لماق م مال. ا  مال فاة ف 

ا ف  مف منم 

ي الم طقةو فراعي ا 
 ل لع الاجاماعي مف الع فقر الطاقة مالق رة عح الاكنه لاع ف ثف الم ال لاحبوف  ناائع احة الطيل ف 
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1. Introduction 

 

Energy poverty and systemic energy inequalities have long hindered socioeconomic development 

across the Middle East and North Africa (MENA). Among the region’s 215 million residents, 

approximately 65 million lack access to electricity, while an additional 60 million face frequent 

power outages and unreliable energy supplies (Olawuyi, 2020). Challenges related to energy 

affordability, reliability, and cleanliness remain pervasive. From the standpoint of conditions 

conducive to healthy development, energy poverty is most manifested by the lack of access to 

clean cooking fuels and inadequate household electrification (Katoch et al., 2024). These 

deprivations contribute to respiratory and cardiovascular diseases, illnesses from improperly 

stored or prepared foods, and premature deaths linked to indoor air pollution exposure (González-

Eguino, 2015; İpek and İpek, 2024; Pondie et al., 2024). 

 

Many children in the MENA region face hazardous living conditions, inadequate prenatal and 

early-life care, and insufficient nutritional intake. These challenges contribute to a 

disproportionately high prevalence of chronic ailments, leading to wasting, stunting or, in severe 

cases, infant mortality. Malnutrition, both in the short and long terms, carries significant adverse 

effects. Pre-conception and early pregnancy malnutrition adversely affect maternal, neonatal, and 

child health outcomes, while in-utero malnutrition increases the risk of disability and reduced years 

of schooling (Almond & Mazumder, 2001; Meng & Qian, 2009). Beyond the immediate human 

tragedy, early-childhood deprivations can have lasting consequences even for the larger group who 

survive but are permanently scarred by these hardships. Stunting, for instance, is associated not 

only with increased mortality rates, but also diminished adult stature, educational attainment and 

incomes (Hoddinot & Kinsey, 2001; Alderman et al., 2006; Grantham-McGregor et al., 2007; Van 

den Berg et al., 2009; Molina, 2012; Currie & Vogl, 2013). As Randall Kuhn (2012) observed, 

“Improvements in basic human development can alter the shape of the human life course, creating 

entirely new patterns of human capital formation, savings, and time use” (p. 653). Given the higher 

prevalence of stunting in low and middle-income populations, particularly in developing countries, 

prioritizing these regions becomes imperative (Black et al., 2020). 

 

Energy poverty may disproportionately affect women and girls, who are often tasked with 

collecting traditional energy sources including biomass fuels such as wood, agricultural residues, 

and animal waste (Leduchowicz-Municio et al., 2023; Iddrisu et al., 2024). This gendered burden 

has severe health and socioeconomic consequences. Women and girls can spend several hours 

daily on fuel collection and cooking, exposing themselves to high concentrations of polluted fumes 

and increasing their risk of respiratory diseases and injuries from carrying heavy loads (Haddad 

et. al, 2021). Household air pollution, primarily caused by relying on traditional fuels, is the fifth 

leading risk factor for morbidity among women in low and middle-income countries, compared to 

being eighth among men, and is responsible for 60% of premature deaths among women and 

children (Haddad et. al, 2021). 

 

In addition to health risks, the time-intensive nature of fuel collection limits women’s and girls’ 

access to education and economic opportunities. For girls in low-income countries, the burden of 

energy-related household tasks contributes to their ‘time poverty,’ reducing girls’ school 

enrollment rates and educational attainment, and preventing them from pursuing other personal 

development or income-generating activities. This perpetuates gender inequalities and reinforces 
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a cycle of disadvantage that limits women’s future opportunities for advancement (Iddrisu et al., 

2024). 

 

Energy poverty thus poses profound disadvantages for families, particularly affecting the physical 

and mental health and cognitive development of children. Despite childhood being a critical period 

of vulnerability, there is a notable lack of empirical research on the relationship between energy 

poverty and childhood development in energy-poor countries (Karmaker et al., 2022; Byaro et al., 

2024). In Sub-Saharan Africa and South Asia, existing research highlights that limited access to 

electricity, clean fuels and cooking facilities exacerbates health risks and developmental 

challenges. For instance, inadequate access to clean cooking facilities is linked to a higher 

prevalence of respiratory diseases due to indoor air pollution, while the lack of reliable electricity 

hampers the provision of essential health services and limits educational opportunities for children 

(IEA, 2019; ESMAP, 2020; Seforall, 2020). Evidence from China and India has demonstrated the 

adverse impact of energy poverty on the subjective well-being of children, primarily through 

adverse health outcomes such as respiratory illnesses and diminished academic performance 

caused by poor lighting and energy shortages (Rafi et al., 2021; Zhang et al., 2021a). In the 

Northern Mediterranean, studies have linked energy poverty to poor mental health, higher rates of 

asthma, and increased childhood obesity (Oliveras et al., 2021).  

 

In the MENA region, energy poverty has been closely linked to income poverty, particularly in 

North Africa, Yemen, and parts of the Levant, where lower-income households struggle to afford 

reliable energy access (Hamed & Peric, 2020; Belaïd, 2022). Geography has also played a 

significant role, as urban areas typically enjoy better access to modern fuels and electricity 

compared to rural regions, where energy supply remains insufficient and unreliable (El-Katiri, 

2014). 

 

Climate change also presents a health risk to vulnerable households, particularly in relation to food 

security. The continuous rise in surface temperatures, coupled with more frequent and intense 

heatwaves and precipitation events is projected to have profound implications worldwide. These 

effects include reduced water availability, compromised food security, infrastructural damage, and 

decreased agricultural incomes. Notably, low and middle-income countries are expected to bear a 

disproportionate burden due to their heightened vulnerability to economic slowdowns and food 

shortages, exacerbating poverty and potentially escalating conflicts (Louis & Hess, 2008).  

 

The repercussions of climate change for agriculture manifest themselves in a loss of aggregate 

crop production, with tropical and temperate regions relying on rainfed agriculture facing the 

strongest impact (Challinor et al., 2014). Among these regions, developing countries in Africa 

stand out as particularly vulnerable, experiencing adverse effects on agricultural production due to 

erratic rainfall patterns and soaring temperatures (Davenport et al., 2017). Frequent flooding, 

droughts, and extreme heat further challenge families which are dependent on subsistence farming 

to meet their nutritional needs. Given that children in developing regions, especially in 

impoverished communities, are already susceptible to food and nutritional insecurity, 

understanding the potential impact of climate change on their nutritional status is critical. 

 

Climate change and extreme weather events interact with energy poverty, amplifying the health 

vulnerabilities of at-risk populations, particularly children. Climate change intensifies energy 
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poverty in several ways. First, increasingly extreme summers and winters, as well as localized 

temperature spikes, may directly exacerbate the experience of energy poverty of those who were 

already exposed to it. Second, extreme temperatures place significant strain on energy producers 

and distributors to meet heightened cooling and heating needs. Extreme weather events such as 

storms and floods also damage energy infrastructure, leading to disruptions in energy supply and 

access. In some cases, entire communities are cut off from the energy grid for extended periods, 

thrusting them into energy poverty or further deepening their preexisting deprivation.  

 

Measuring the impacts of energy poverty on various social groups is subject to inherent challenges, 

particularly amid climate change and particularly in developing countries (Rafi et al., 2021; İpek 

& İpek, 2024). Dong et al. (2021b) highlighted the role of low-carbon energy transitions – and 

particularly government policies in promoting renewable energy technologies and reducing 

dependence on solid fuels – in reducing energy poverty and its health effects in China. While the 

impact of energy poverty on children’s health has been explored in other regions, there is a notable 

lack of empirical evidence from the MENA region. Research into the repercussions of transitioning 

to low-carbon energy sources – such as electrification and promotion of natural gas and renewable 

energy – for energy-poverty alleviation also remains limited (Dong et al., 2021a; Karpinska & 

Śmiech, 2021). The following section and Table A1 in the appendix review the existing 

scholarship most relevant to our undertaking. 

 

Our study addresses the gaps in literature by being the first to empirically analyze the relationship 

between energy poverty, extreme weather occurrences, and children’s health outcomes in the 

MENA region, particularly in the context of climate change. The paper contributes by estimating 

the degree of households’ energy poverty, interacting it with the households’ exposure to extreme 

temperatures locally, and estimating their effects on children’s health outcomes. We consider three 

alternative measures of energy poverty: the Multidimensional Energy Poverty Index (MEPI) 

developed by Nussbaumer et al. (2012, 2013), a distinct Multidimensional Energy Poverty 

Principal Component Analysis (MEP PCA) index, and a simple measure of households’ use of 

clean energy sources for cooking. High-resolution data on recent, local maximum temperature 

anomalies (Baker & Anttila Hughes, 2021; McMahon & Gray, 2021; Thiede & Gray, 2020; van 

der Merwe et al., 2022) are matched to households at the level of provinces. The acute and more 

cumulative effects of energy poverty and extreme temperatures are then estimated for children’s 

anthropometric development and health outcomes. Children’s outcomes are measured using four 

key indicators: stunting and wasting among children under five, neonatal mortality within 28 days 

of birth, and infant mortality before the children’s first birthday. 

 

The energy–climate–development nexus is evaluated using 22 health surveys from across ten 

MENA countries – Algeria, Comoros, Egypt, Iraq, Jordan, Mauritania, Morocco, Palestine, 

Tunisia, Turkey – and over time (Figure A1 and Table A2 in the appendix). These surveys 

represent a variety of socioeconomic, political, cultural and energy-poverty challenges across the 

region. For most countries we rely on two most recent survey waves, allowing for a comparative 

assessment of trends in children’s health outcomes and the effects of indoor climate conditions 

and climate change across the MENA region and over time. Using multivariate regression models 

for limited dependent variables, we estimate the effects of energy poverty and extreme 

temperatures on children’s health outcomes. The models account for child demographics (age, 
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gender), family characteristics (wealth index, mother’s and father’s education) as well as regional 

differentials (urban/rural areas, and governorate/state of residence). 

 

The rest of this study is organized as follows: Section 2 presents a literature review on existing 

approaches to energy poverty measurement and on the impacts of climate conditions on children’s 

health. Section 3 describes our data and methods used for evaluating our hypotheses. Section 4 

discusses the empirical results and their robustness. Finally, Section 5 summarizes the key findings 

and highlights their policy implications. 
 

2. Literature review 

 

Energy poverty has gained serious attention in recent scholarship and policy deliberations due to 

its critical impact on various aspects of individuals’ wellbeing, including health and education 

outcomes, and economic empowerment. Recent research has also examined the interplay between 

energy transitions and wellbeing.1 

 

Energy poverty has been found to exacerbate gender inequality, disproportionately affecting 

women and girls. Women and girls have historically shouldered the responsibility of gathering 

traditional energy sources, such as firewood and biomass, and using them for food preparation. 

These tasks not only expose them to health risks but also limit their access to educational and 

developmental opportunities, perpetuating cycles of inequality (Hamed and Peric, 2020). Hence, 

decarbonization implemented by transitioning to cleaner fuels, is likely to yield major benefits for 

vulnerable groups, including rural residents and women (Batool et al., 2022; Zhang et al., 2022; 

Iddrisu et al., 2024). 

 

Energy poverty can be measured using various approaches, each focusing on different aspects of 

access to and utilization of energy. These methods range from income-based indices to 

multidimensional assessments of energy service access, and each offers insights into the impact of 

energy poverty on different population groups and different outcomes. Boardman (1991) 

introduced a single index approach based on household energy expenditure relative to total 

expenditure. This approach emphasizes the financial strain on households lacking access to 

affordable energy. Banerjee et al. (2021) advanced an energy development index gauging 

households’ access to electricity and energy consumption. Xie et al. (2022) introduced the concept 

of energy poverty line – set at twice the median ratio of the household heating expenditure to 

income – and assessed statistics including energy poverty gap, breadth, and depth. The 

International Energy Agency (IEA, 2011) focused on the transition to modern fuels as a key 

indicator of energy poverty, recognizing the role of cleaner, more efficient energy sources in 

improving living conditions. Nussbaumer et al. (2012, 2013) developed a MEPI assessing 

deprivation in accessing modern energy services including electricity network, clean cooking fuels 

and facilities, and heating. Amin et al. (2020), Rafi et al. (2021) and Zhang et al. (2021a) expanded 

on the multidimensionality of energy poverty by considering factors such as electricity access, and 

energy consumption patterns. 

 
1 Table A1 in the appendix provides a concise overview of the evolving definition of energy poverty and its observed associations 

with children’s health, economic development and energy transition. 
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A group of studies have evaluated the prevalence and depth of energy poverty and their effect on 

population health. Banerjee et al. (2021) confirmed the association between energy poverty and 

lower health and education outcomes, and higher child mortality, across 50 developing countries. 

Access to electricity exerted a stronger influence than actual energy use. In Turkey, energy poverty 

measured by inadequate heating was found to adversely impact health and out-of-pocket 

expenditures of the exposed individuals, calling for policy action at the level of households, such 

as improving housing conditions and insulation (Kose, 2019). In Vietnam, despite economic 

growth, energy poverty was found to persist, particularly among the economically disadvantaged 

and ethnic minorities, who continue relying on traditional energy sources (Nguyen et al., 2019). 

Similarly, in South Asia, energy poverty levels remain high, with Bangladesh and Afghanistan 

facing significant challenges due to a shortage of modern cooking fuels, with over 80% of 

households, concentrated primarily in rural areas, relying on contaminated traditional sources such 

as firewood and animal dung, and having inadequate ventilation (Abbas et al., 2021). The Maldives 

and Pakistan, by contrast, stood out as facing low energy deprivations, with few households 

lacking access to electricity. The cross-country analysis revealed that energy poverty in South Asia 

was closely related to socioeconomic outcomes including women’s obesity, households’ water 

sources, access to mosquito nets, sterilization conditions, educational level, marital status, and 

occupation (Abbas et al., 2021). 

 

Extreme weather conditions have also been confirmed to affect child health outcomes, even before 

children’s birth. In Gambia, pregnancies conceived during periods of low precipitation have been 

associated with shorter gestation periods and increased risk of preterm birth (Rayco-Solon et al., 

2005). In Mali, extreme temperatures and reduced agricultural production have been linked to 

lower birth weights, while in South Asia, precipitation extremes during a child’s first year of life 

have been associated with stunting, particularly in underprivileged households (Grace et al., 2021; 

McMahon & Gray, 2021). 

 

Across Sub-Saharan Africa temperature and precipitation anomalies have had adverse effects on 

child weight, with high temperatures associated with lower weights and an increased risk of 

wasting, and low precipitation linked to weight reduction (Thiede & Strube, 2020). Rainfall shocks 

have also affected children’s growth, with droughts resulting in decreased growth rates, 

particularly among children aged 12–24 months (Hoddinott & Kinsey, 2001), and increased 

stunting levels in children aged 1–5 years (Grace et al., 2012). Similarly, in the Nile Basin 

countries, precipitation and temperature anomalies have been linked to the risk of stunting, but the 

effects varied across Egypt, Ethiopia and Uganda (Elayouty et al., 2022). 

 

These findings from across developing countries in South Asia and Sub-Saharan Africa – and their 

variation across national and sub-national contexts – underscore the need for further research in 

the understudied and heterogeneous MENA region. We hope to address the knowledge gap using 

a comparative approach on ten countries and two points in time accounting for both indoor energy 

and climate conditions and outdoor extreme temperature variations. 
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3. Methods and data  

 

The following analysis investigates the effects of energy poverty, and their mediation by extreme 

weather events, on the prevalence and incidence of inadequate anthropometric development and 

mortality among MENA region children. Our research questions are: 

 

1. How have energy poverty and the occurrence of extreme weather events evolved over the 

past decade across MENA countries? How have the anthropometric outcomes and 

mortality of local children evolved during the same times? 

2. Which demographic and economic groups are the most vulnerable to indoor and outdoor 

climate conditions? 

3. How are energy poverty and children’s outcomes associated? What are the impacts of 

energy poverty on children’s anthropometric development and their neonatal and infant 

mortality? 

4. Do extreme weather events mediate the effects of energy poverty on children’s outcomes? 

 

The following subsections describe our data sources and the specific empirical methods used for 

the analysis. 

 

3.1. Data 

 

The study relies on a set of 22 standardized, nationally-representative population and health 

surveys from ten MENA countries, namely: Algeria (2012–13, 2018–19), Comoros (2012, 2022), 

Egypt (2014, 2021), Iraq (2011, 2018), Jordan (2012, 2017–18), Mauritania (2015, 2019–21), 

Morocco (2011, 2018), Palestine (2014, 2018–19), Tunisia (2011–12, 2018) and Turkey (2013, 

2018–19). These surveys are generally taken from the UNICEF-coordinated Multiple Indicator 

Cluster Surveys (MICS) program and the US AID-coordinated Demographic and Health Surveys 

(DHS). The only exceptions are the Egyptian Family Health Survey (FHS), and Moroccan Surveys 

from the Pan-Arab Project for Family Health (PAPFAM) and National Survey on Population and 

Family Health (NSPFH), as summarized in Table A2 in the appendix. The surveys differ in their 

sample sizes, data completeness and missingness, and format and coverage of some variables, but 

efforts have been undertaken by the respective data providers and by the authors to harmonize the 

key variables and ensure comparability. 

 

The surveys encompass a broad spectrum of indicators related to living conditions, education, 

health, nutrition, and time-use of the national population, with a particular emphasis on the living 

conditions of young children and their mothers. The surveys include variables related to indoor air 

pollution, access to electricity, and modern fuels and cooking facilities. The comprehensive 

datasets thus provide an ideal foundation for studying the health and anthropometric development 

outcomes of young children amid climatic challenges facing households. 

 

Children’s health, the outcome of interest, is measured using four indicators: Neonatal mortality 

refers to the death of a newborn within the first 28 days after birth; Infant mortality is the death 

within the first year of life after birth; Stunting means extremely low height for age and wasting 

means extremely low weight for height, using the World Health Organization’s (WHO) 2006 

global growth standards for children under the age of five years (de Onis et al., 2006; Leroy, 
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2011).2 These four health outcomes can be analyzed across cohorts of children, at different ages, 

to flag instability or poor safety of food prepared at home, chronic or repeated experience of 

illnesses, and overall child well-being. 

 

Table 1 reports the prevalence of negative child-health outcomes across our surveys. Mauritania 

2021 is shown to have the highest stunting rate at 25.21% and Turkey 2019 the lowest rate at 

5.97%. Stunting rates declined or stagnated (with only slight increases in Mauritania, Morocco, 

Palestine and Tunisia) in all countries. Infant mortality was also highest in Mauritania, reaching 

7.71% in 2011 but declining to 3.85% by 2021 – which was still the highest among all countries 

and years. The lowest infant mortality rate was observed in Tunisia and Jordan in 2023, at 1.4%. 

In fact, infant mortality declined or stagnated over the years in all countries except in Egypt where 

it doubled from 1.48% in 2014 to 3.06% in 2021. The trends in children’s wasting and underweight 

are analogous to those for stunting, and neonatal mortality also generally tracks the trends in 

broader infant mortality. 

 

Table 1. Summary statistics of extreme temperature occurrences, and children’s health 

outcomes in regression samples 

 

Stunting 

(%) 

Wasting 

(%) 

Under-

weight 

(%) 

Infant 

mortality 

(%) 

Neonatal 

mortality 

(%) 

Temperature extremes 

up to 9 months pre 

birth (% deviations 

from long-term norms) 

Temperature extremes 

up to 12 months post 

birth (% deviations 

from long-term norms) 

ALG ‘13 9.33 3.60 3.44 2.21 1.59 -.337 -.221 

ALG ‘19 8.05 2.46 2.89 2.25 1.90 .211 .222 
COM ‘12 29.61 11.12 15.59 3.26 2.06 -.226 -.116 

COM ‘22 14.10 4.82 11.74 2.98 1.84 .312 .356 

EGY ‘14 17.74 7.85 6.85 1.48 1.09 .104 -.004 
EGY ‘21 12.80 3.12 3.77 3.06 1.92 .009 -.213 

IRQ ‘11 21.73 6.41 6.89 3.63 1.97 -.069 -.293 

IRQ ‘18 9.89 2.45 2.94 2.59 1.53 .225 .495 

JOR ‘12 7.65 2.43 3.01 2.44 1.45 -.054 -.017 

JOR ‘18 -- -- -- 1.57 1.13 -.116 -.025 

JOR ‘23a 8.00 2.00 -- 1.40 0.90 -- -- 
MRT ‘11 25.28 13.22 28.29 7.71 3.43 -.096 .002 

MRT ‘15 23.52 14.02 30.18 4.96 3.25 -.219 -.106 

MRT ‘21 25.41 6.15 16.55 3.85 2.17 .304 .357 
MAR ‘11 15.62 2.38 3.32 2.70 1.95 -.215 -.312 

MAR ‘18 15.88 3.15 3.08 1.74 1.24 .345 .279 

PAL ‘14 7.39 1.19 1.39 2.22 1.17 .291 .258 
PAL ‘20 8.72 1.33 2.12 1.93 1.03 .276 .281 

TUN ‘12 10.13 2.76 2.33 2.33 1.39 -.210 -.241 

TUN ‘18 8.27 2.07 1.52 1.45 0.70 .199 .240 
TUN ‘23 13.50 3.14 3.14 1.43 0.83 -.164 -.007 

TUR ‘13 9.54 1.74 2.10 3.22 0.73 -.459 -.136 

TUR ‘19 5.97 1.67 1.58 2.82 0.89 .381 .306 

Notes: Child samples are nationally weighted. Temperature extremes evaluated on sampling-weighted children’s sample. a Initial 

figures as per Key Indicators report. “--” indicates missing survey data.  

 

Explanatory variables in the analysis include households’ wealth, the level of educational 

achievement of mothers and their partners (or children’s fathers or household heads, depending on 

data availability), household’s residence in rural versus urban areas, residence in individual 

 
2 Children’s measurements are converted into standard deviations from the reference population with a healthy median and variance, 

and values two or more standard deviations below the median are flagged as stunting or wasting. The conversion is done using the 

zscore06 automatic do-file program in Stata. zscore06 takes children’s height and weight, age in months, sex, and an indicator for 

whether the children were recumbent or standing while measurement was taken. These indicators are available in all health surveys 

used here. 
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administrative regions3, and gender of the child and of the household head.4 Household wealth is 

defined by quintiles based on the asset index of durable goods imputed by principal component 

analysis (Hlasny & AlAzzawi, 2019). Households’ energy poverty is proxied by three alternative 

indices (refer to the next subsection) constructed using survey variables enumerated in Table 2.   

 

Table 2. Key household energy variables in health surveys (binary indicators) 
Exposure to non-clean fuels Lack of electricity 

- solid fuel used for cooking (charcoal, wood, straw/shrubs, dung, crop residue, 

garbage, other) 

- solid fuel used for space heating (charcoal, wood, straw/shrubs, dung, crop residue, 

garbage/plastic) 

- fuel used for lighting includes gasoline, kerosene, oil, candle or fire 

- cooking not done in a separate room from living quarters 

- households that cook have no chimney or hood 

- in child labor, child is exposed to dust, fumes, gas, extreme cold, heat or humidity 

- clean fuels (electricity, liquefied petroleum gas LPG, natural gas, biogas) are not 

used 

- no access to electricity 

- lack of household appliances 

whose use depends on reliable 

energy (refrigerator/freezer, 

radio, television, 

telephone/mobile) 

- no electric lighting at home 

 

Children’s exposure to outdoor weather extremes is evaluated during the nine prenatal months and 

during the first two years of life. Children’s experiences in these periods may lead to disruptions 

in their anthropometric growth or even to mortality (McMahon and Gray, 2021). Weather extremes 

variables are derived from geographically-gridded daily meteorological and anthropogenic data. 

Specifically, maximum temperature data are extracted from the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC) in the form of Global 

Telecommunications System (GTS) data. The data are geospatially gridded using the Shepard 

(1968) algorithm. CPC global unified temperature data are of 0.5° × 0.5° geographic resolution, 

spanning the period 1979-01-01 to present. These data were obtained in the network common data 

form (NetCDF), extracted and analysed using geographic information system (GIS) and statistical 

software – ArcGIS and R. Time-standardized shapefiles from the Global Administrative 

Boundaries model (GADM) database and the extracted weather data were combined to compute 

the spatial means of maximum temperatures in degrees Celsius (°C) for each month from January 

2005 to April 2024, for each province.5 In each national province, the running 9-month (pre-birth) 

and 12-month (post-birth) means are transformed into deviations from historical means for the 

same months. These are interpreted as exogenous anomalies from locally familiar climate 

conditions. 

 

The rightmost columns in Table 1 illustrate. In eight countries, the extremes have been above 

historic local norms (when evaluated both during pre-natal and post-natal months). Only in Jordan 

and Tunisia we see negative trends. This points to a region-wide destabilization of weather 

conditions over the past decade. 

 
3 They are typically governorates (henceforth, provinces), varying in size and count across MENA countries. They include 7 espace 

de programmation territoriale in Algeria, 25 governorates in Egypt, 3 islands in Comoros, 18 governorates in Iraq, 12 governorates 

in Jordon, 12 wilaya in Mauritania, 14 regions in Morocco, 16 governorates in Palestine, 9 regions in Tunisia, and 12 regions in 

Turkey. The North and South Sinai governorates in Egypt ‘14 are excluded from the analysis due to their idiosyncratic status as 

‘frontier provinces,’ for which some data are not reported at the governorate level. 
4 The small group of women who head their own households is made up of women who are widowed, self-employed, reliant on 

remittances from relatives abroad, or divorced. As a result of this heterogeneity of circumstances of female household heads, 

estimates of the effects of household-head gender should be viewed with caution (AlAzzawi et al., 2024). 
5 GADM.org provides maps and spatial data for all countries and at various levels of sub-division. It provides data at high spatial 

resolutions that includes an extensive set of attributes. 



 

10 

 

These deviations are suspected to be stronger predictors of population health outcomes than, say, 

raw temperature levels (Gray & Wise, 2016; Nordkvelle, Rustad, & Salmivalli, 2017; Mueller et 

al. 2020; Thiede & Strube 2020; Nicholas et al. 2021). The constructed monthly climate anomalies 

are linked to children’s prenatal and first-year outcomes based on their month of birth (including 

for deceased children) and province of residence. 

 

3.2. Methods 

 

Energy poverty index: Households’ energy poverty is derived alternatively using the MEPI, the 

regionally tailored Multidimensional Energy Poverty Principal Component Analysis (MEP PCA), 

and a binary indicator for households’ use of dirty energy sources for cooking. 

 

We adopt the MEPI framework based on the Alkire–Foster aggregation approach (Alkire and 

Foster 2011; Nussbaumer et al. 2012), which is supported by up-to-date evidence in academic and 

international-organization studies (Nussbaumer et al. 2013; Mendoza et al. 2019; Zhang et al. 

2019; Siksnelyte-Butkiene et al. 2021) and appears to be relevant to middle-income MENA 

countries. At the national level, the index (𝑀0 = 𝐻 × 𝐴) is computed as a product of the headcount 

ratio of multidimensional energy poverty (𝐻 = ∑ 1[𝑀𝐸𝑃𝐼 > 0.3]/𝑁) and average intensity of that 

poverty (𝐴 = ∑ 1[𝑀𝐸𝑃𝐼 > 0.3] × 𝑀𝐸𝑃𝐼), where the summations are over the entire population 

𝑁, and 𝑀𝐸𝑃𝐼 is the weighted sum of energy deprivations of a person, as follows: 

 

𝑀𝐸𝑃𝐼 = 0.6
3⁄ × (𝐶𝑜𝑜𝑘𝑖𝑛𝑔 𝐹𝑢𝑒𝑙 +  𝑂𝑝𝑒𝑛 𝑆𝑡𝑜𝑣𝑒 +  𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦)

+ 0.4
3⁄ × (𝐹𝑟𝑖𝑑𝑔𝑒 + 𝑅𝑎𝑑𝑖𝑜/𝑇𝑉 +  𝑃ℎ𝑜𝑛𝑒) 

 

(1) 

 

𝐶𝑜𝑜𝑘𝑖𝑛𝑔 𝐹𝑢𝑒𝑙, 𝑂𝑝𝑒𝑛 𝑆𝑡𝑜𝑣𝑒, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦, 𝐹𝑟𝑖𝑑𝑔𝑒, 𝑅𝑎𝑑𝑖𝑜/𝑇𝑉 and 𝑃ℎ𝑜𝑛𝑒 are binary indicators 

of the six respective energy deprivations, with the first three assigned 50% higher weights as those 

of the latter three. (The deprivation ‘depth’ cutoffs according to the Alkire–Foster approach are set 

at ‘<1’ of the binary variables.) Individuals’ 𝑀𝐸𝑃𝐼 ranges from 0 to 1. The cutoff for poverty (the 

‘intensity’ cutoff in the Alkire–Foster approach) is set at 30% of the weighted energy deprivations, 

at 𝑀𝐸𝑃𝐼 > 0.3. Individual-level subscripts are omitted for clarity of presentation. It should be 

noted that all members of a household including children are assigned the same 𝑀𝐸𝑃𝐼 scores, and 

these scores in their continuous form enter the regression analysis. The inputs – indicator 

definitions and weights – and the results of the MEPI framework are validated for their normative 

relevance in the MENA context and their satisfactory statistical properties in the surveys used. 

 

One limitation of MEPI and 𝑀0 is that they are global indices, with fixed components that would 

have to be adjusted manually to tailor the index to the MENA context. As an alternative continuous 

index derived from the surveys at hand, we conduct the Multidimensional Energy Poverty 

Principal Component Analysis (MEP PCA) (Robertson et al. 2019; Gupta et al. 2020; Jayasinghe 

et al. 2021), which derives the indicator weights endogenously from the joint distribution of 

indicators across individuals. We derive MEP PCA scores as the weighted sum of energy-

deprivation indicators – as in MEPI – where the weights come from the loading factors estimated 

endogenously in the first component of the PCA. These loading factors are fitted according to how 

much each indicator varies across individuals, thus informing on maximum discrimination in 

energy-deprivation profiles across individuals, and maximizing sample variance of the resulting 
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scores. At the national level, we can report the average score (𝑀𝐸𝑃 𝑃𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ 𝑀𝐸𝑃 𝑃𝐶𝐴/𝑁) 

across all 𝑁 individuals. 

 

Construction of our MEP PCA scores is validated using several statistical criteria. The eigenvalue 

of the first principal component exceeds by far the eigenvalues of the following components, 

suggesting that this first component is adequate at differentiating individuals according to their 

energy-deprivation profiles, and using alternative sets of components would not change the 

imputed energy-poverty scores substantially. The Kaiser-Meyer-Olkin measures of sampling 

adequacy, evaluating the proportion of variance among indicators common to them exceed 0.60 in 

all surveys, suggesting that the indicators are adequate to perform the PCA. The Bartlett tests of 

sphericity, determining whether the correlation matrix used for factor analysis is an identity matrix, 

rejects the null hypothesis of zero correlation across the indicators, implying that indicator 

correlations are not due to sampling error and justifying the use of these indicators (Cureton & 

D’Agostino,1983). Also worth noting, factor loading across the six indicators are normatively 

plausible and are qualitatively similar across surveys, validating the outcome of the exercise. 

 

Finally, as yet another alternative proxy for individuals’ energy poverty relevant in MENA 

countries, we also use a binary indicator for households’ use of dirty energy sources for cooking, 

and we can report its mean in the population. The fact that all survey variables used for the 

construction of MEPI, MEP PCA and the dirty fuels indicator are binary, and non-cardinal 

facilitates certain comparability between the indices. Table 3 illustrates the alternative measures 

of energy deprivations and their selected aspects at the national level, across all surveys. Figures 

A2 and A3 in the appendix illustrate. Mauritania 2015 is seen with the highest 𝑀0 score of 0.620, 

followed by Comoros 2012 with a score of 0.592, both of which far exceed the values in other 

countries. This is on account of very high headcount ratios of energy poverty in the two countries. 

Half the surveyed countries witnessed a decline in 𝑀0 over the years – most notably Comoros, 

followed by Jordan, Morocco and Palestine – and only Algeria saw an increase. These trends are 

confirmed by the 𝑀𝐸𝑃 𝑃𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and by the mean dirty fuels index. In fact, in most countries where 

dirty fuels are surveyed, they are critical contributors to energy poverty in 𝑀0 and 𝑀𝐸𝑃 𝑃𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, and 

in ten surveys they are the single most significant contributor compared to other components. Table 

A3 in the appendix reports summary statistics of other explanatory variables in regression samples. 

 

Child health regressions: Next, we use multivariate probability regressions to estimate the effects 

of children’s energy deprivation (as measured alternatively by MEPI, MEP PCA or a dirty energy 

indicator) on their health outcomes (stunting, wasting, infant mortality and neonatal mortality, 

respectively), accounting for outdoor temperature extremes, and various child and household 

circumstances 𝑋. Validity of these models assumes that child i’s true health outcome 𝐻𝑒𝑎𝑙𝑡ℎ𝑖 is a 

linear function 𝐸(𝐻𝑒𝑎𝑙𝑡ℎ𝑖|𝑥𝑖) = 𝑓(𝑥𝑖, 𝛽) = 𝑥𝑖𝛽. This unobserved variable 𝐻𝑒𝑎𝑙𝑡ℎ𝑖 is related to 

the observed dependent variable 𝐻𝑒𝑎𝑙𝑡ℎ𝑖
̇  as follows: 𝐻𝑒𝑎𝑙𝑡ℎ𝑖

̇ = 1[𝐻𝑒𝑎𝑙𝑡ℎ𝑖 > 0] = 1[𝜀𝑖 >
−𝑥𝑖𝛽]. Here 𝜀𝑖 accounts for other uncontrolled factors including the child caretakers’ efforts and 

the child’s luck. Under the commonly made assumption that 𝜀𝑖 follows the normal distribution, 

the maximum-likelihood probit model is appropriate for estimating Pr(𝐻𝑒𝑎𝑙𝑡ℎ𝑖
̇ = 1|𝑥𝑖). Each 

child 𝑖’s health status in province 𝑗 at age 𝑡 is estimated by the following probit model: 

 

Health𝑖jt= 𝛼+ 𝛽 EnergyDeprivation𝑖t+𝛾 𝑋𝑖+ φ Zj𝑡 + 𝜀𝑖jt   (2) 
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Here 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑝𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = {𝑀𝐸𝑃𝐼, 𝑀𝐸𝑃 𝑃𝐶𝐴, 𝑑𝑖𝑟𝑡𝑦 𝑓𝑢𝑒𝑙}. 𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑗𝑡 denotes child 𝑖’s health 

outcomes for child 𝑖 in province j at age 𝑡. 𝑋𝑖𝑡 is a vector of other socio-economic determinants of 

𝑖’s health outcomes. 𝑍𝑗𝑡 is the exposure to temperature extremes in 𝑖’s province 𝑗 at age 𝑡. While 

the main model specifications estimate the effects of EnergyDeprivation𝑖t and 𝑍𝑗𝑡 separately, their 

complementarity is considered in supplementary models via an interaction term 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑝𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑖𝑡 × 𝑍𝑗𝑡. (Refer to models 6 and 13 in Table 4, and Tables A15–A16 in the 

appendix.) 

 

The regressions account for population sampling weights, and coefficient standard errors are 

corrected for arbitrary heteroskedasticity and correlation at the household level. The estimated 

probit coefficients are converted into average marginal effects (AMEs) at variable means, and the 

AMEs are compared across countries and years. Probabilities of health outcomes for all children 

are also estimated and compared across selected demographic groups – the two genders and lower 

versus upper wealth quantiles (refer to Figures 1 and 2). 

 

Finally worth noting, households’ energy poverty may be endogenous in models of the 

households’ health status – because of omitted third factors (e.g., parents’ disability, income 

poverty, residence in deprived circumstances, etc.), or family-health contributors to poverty. 

Previous studies have shown a possible connection where health status influences income levels, 

thus contributing to energy poverty (Awaworyi Churchill et al., 2020; Zhang et al., 2019, Zhang 

et al., 2021). 

 

To mitigate this potential endogeneity, we adopt an instrumental variable (IV) two-stage approach 

with a ‘donut’ instrument for households’ MEPI scores. The instrument is constructed as the 

average MEPI score of similar households in the same province–urban/rural area, same wealth 

quintile, during the same season – except the household in question, 𝑀𝐸𝑃𝐼−𝑖𝑗𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (refer to Tables A4 

and A18 in the appendix). Essentially, we view households’ membership in these clusters as 

relatively exogenous. In each survey, there are 100–400 of such clusters. These clusters are 

associated with different supplies of fuels by government and by nature, and so they affect MEPI. 

Households’ average MEPI in these clusters may not directly affect any specific child’s health. 

Hence, the instrument has the desirable properties of satisfying the exclusion restriction in the 

structural regressions, and the relevance condition in the first-stage regressions (Tables A23–A24). 

Following the first stage regressions, the instrumented variables are linearly transformed to have 

the same minimum and maximum values as MEPI.
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Table 3. Summary statistics of multidimensional energy poverty (%/100) 

 𝑴𝟎 

Deprivatio

n intensity, 

constrained 

among 

poor (𝑨) 

MEP 

headcoun

t ratio 

(𝑯) 

Contrib. 

of dirty 

fuels to 

MEP 

Contrib. of 

open stove 

× dirty 

fuels to 

MEP 

Contrib. 

of no 

electricity 

to MEP 

Contrib. 

of no 

fridge/ 

freezer 

to MEP 

Contrib. 

of no 

radio/T

V to 

MEP 

Contrib. 

of no 

phone to 

MEP 

Pearson’s 

correlation of 

MEPI with 

wealth quintile 

MEP PCA: 

1st 

component 

score [0–1] 

Dirt

y 

fuels 

(0/1) 

ALG ‘13 .005 .492 .011 .085 .083 .139 .094 .065 .026 -0.247 .011 .005 

ALG ‘19 .051 .426 .120 .196 .195 .008 .011 .008 .008 -0.363 .038 .128 

COM ‘12 .592 .649 .911 .182 .101 .081 .108 .050 .127 -0.722 .636 .859 

COM ‘22 .313 .542 .578 .191 .133 .045 .103 .053 .017 -0.681 .334 .602 

EGY ‘14 .001 .417 .002 -- -- .065 .122 .123 .107 -0.211 .018 -- 

EGY ‘21 .001 .410 .002 .070 -- .042 .119 .109 .071 0.098 .013 .001 

IRQ ‘11 .008 .501 .017 .144 .136 .087 .078 .036 .020 -0.276 .014 .012 

IRQ ‘18 .001 .450 .002 -- -- .141 .133 .128 .048 -0.179 .007 -- 

JOR ‘12 .065 .910 .071 .171 .171 .189 .125 .121 .133 -0.117 .085 .061 

JOR ‘18 .020 .665 .030 .197 .197 -- .131 .131 .009 -- .035 .030 

MRT ‘11 .502 .700 .717 .167 .155 .169 .127 .055 .027 -0.846 .532 .601 

MRT ‘15 .620 .648 .402 .124 .117 .193 .132 .067 .016 -0.838 .446 .385 

MRT ‘21 .486 .698 .697 .178 .155 .159 .124 .068 .013 -0.869 .521 .640 

MAR ‘11 .077 .482 .161 .125 .111 .106 .095 .022 .024 -0.636 .092 .102 

MAR ‘18 .027 .500 .054 .143 .141 .081 .070 .039 .026 -0.384 .039 .039 

PAL ‘14 .011 .518 .022 .168 .156 .009 .040 .024 .122 -0.369 .037 .019 

PAL ‘20 .005 .456 .012 .174 .172 .016 .039 .045 .011 -0.364 .014 .011 

TUN ‘12 .006 .490 .013 .067 .066 .083 .111 .088 .075 -0.314 .011 .004 

TUN ‘18 .003 .472 .006 .046 .044 .077 .121 .105 .077 -0.194 .005 .002 

TUN ‘23 .006 .650 .010 .101 .101 .094 .125 .117 .111 -0.272 .010 .005 

TUR ‘13 .002 .503 .004 -- -- .200 .133 .133 .037 -0.175 .011 -- 

Notes:  “--” indicates missing data for a particular dimension of MEPI. The rest of statistics are computed as if the missing contributions are zero. Turkey 2019 has no energy 

indicators. 
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4. Main results 

 

The following subsections present the estimated effects of the main explanatory variables on 

children’s health outcomes. Table 4 reports the marginal effects of energy poverty and temperature 

extremes – namely, MEPI instrumented, MEPI, MEP PCA, dirty cooking fuels, and temperature 

extremes pre/post birth – on respective health outcomes from models estimated on individual 

surveys. Table 5 then shows the results of selected models estimated on pooled survey waves in 

each country. (Tables A4–A20 present the full sets of results of the models in Tables 4–5 as well 

as additional models.) 

 

Table 4 covers 15 alternative model specifications. Model 1 mitigates endogeneity concerns in 

modeling child stunting by excluding the potentially endogenous parts of households’ MEPI scores 

and using only the parts distilled through instrumenting. (Model 8 applies the same approach in 

explaining infant mortality.) Model 2 uses the MEPI score directly without instrumentation, 

providing a straightforward assessment of its effect on stunting. Model 3 replaces the MEPI score 

with the dirty cooking fuels indicator; Model 4 with the MEP PCA; and Model 5 with the 

deviations in temperature extremes 9 months before and 12 months post birth. For completeness, 

Model 6 controls for both the MEPI score and the temperature extremes 12 months post birth, as 

well as their interaction term, to assess the full nexus of energy poverty, climate change and health 

impacts. Model 7 mirrors Model 2 for children’s wasting, as an alternative and more immediate 

outcome of health and nutrition deprivations. Models 8 to 13 follow the same structure as Models 

1 to 6, respectively, for infant mortality. Finally, Model 14 focuses on the effect of the MEPI on 

neonatal mortality, again as a more immediate outcome of severe deprivations, and Model 15 

examines the effect of temperature extremes in the first 12 months post birth on neonatal mortality. 

 

Table 5 takes the most theoretically relevant and parsimonious models from Table 4 (namely 

Models 2, 5, 9 and 12) and re-estimates them on pooled surveys for each country as Models 16–

19. 

 

4.1. Anthropometric development models 

 

Stunting, a key indicator of chronic malnutrition, reflects both immediate and long-term impacts 

on children’s health, cognitive development, educational attainment, and overall well-being. The 

results of Models 1–6, as seen in Table 4 and especially in Tables A4–A9 in the appendix, reveal 

several consistencies regarding the climate effects on children’s health outcomes. The large 

number of observations and clusters ensures the reliability and robustness of the estimated 

marginal effects, enhancing the statistical validity of the findings. Model statistics confirm a high 

degree of model fit and show that the selected covariates explain children’s probability of stunting 

significantly. 

 

We first take a cautious view that MEPI score may be endogenous in regressions of children’s 

health, so we instrument for it using MEPI score of other comparator households (as described in 

section 3.2). Model 1 shows that the instrumented MEPI – as a proxy for the energy deprivations 

experienced by children – has a positive significant effect on the likelihood of children’s stunting 

in ALG ‘13, IRQ ‘18, MAR ‘11 and TUN ’12, but negative significant in EGY ‘14 and TUN ‘23. 
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In the rest of the surveys, the effect is insignificant, although it is positive in more than half of the 

cases. 

 

In Model 2, assuming away the potential endogeneity of the MEPI to check whether this improves 

the models’ significance, we use MEPI directly without instrumenting. In fact, the omission of 

instrumenting has no effect on the coefficient standard errors. Model 2 confirms that countries 

such as MAR ’18, MRT ’15, PAL ’14 and TUN ’11 show a positive significant effect of MEPI on 

children’s stunting, while the effect is insignificant but for the most part positive in the rest of 

surveys. This suggests that energy poverty, characterized by limited access to modern energy 

sources, tends to exacerbate the risk of malnutrition, particularly in resource-constrained country 

settings. 

 

The following models use alternative measures of energy deprivation. In Model 3, the simple 

binary indicator of dirty cooking fuels is insignificant in all but one survey but has a (weak) 

positive effect in the vast majority of surveys. In Model 4, MEP PCA score has a positive 

significant effect in ALG ‘13, MAR ’11, MAR ’18, MRT ‘15 and TUN ’12, and again an 

insignificant positive effect in most of the other surveys. Generally, MEP PCA exhibits slightly 

weaker performance compared to the MEPI or the instrumented MEPI at predicting stunting. 

 

Model 5 shows the effect of temperature extremes 9 months prior to birth and 12 months post birth 

on stunting. They are jointly significant positive in JOR ’12, PAL ’14 and TUN ‘12, but have 

mixed or negative significant signs in COM ’22, IRQ ’18, MRT ’15, MRT ’21 and TUR ’19. 

Temperature extremes 12 months post birth tend to have positive effects in more surveys, 

suggesting that early post-birth climate conditions may be of greater concern to anthropometric 

growth than pre-birth conditions. Adding an interaction term of MEPI and temperature extremes 

12 months post birth, in Model 6, leads to more significant positive effects of MEPI across most 

surveys – particularly in MAR ’18, MRT ’15, PAL ‘14, PAL ‘20, TUN ‘12, and TUN ‘18. The 

effect of the extreme temperatures also becomes more consistently positive across surveys, 

especially COM ’22, MAR ’18, TUN ’12 and TUN ’18. The interaction term itself is largely 

insignificant and of either sign across surveys, suggesting that the effects of the respective 

variables do not universally strengthen/complement or mitigate/replace each other. 

 

For completeness, Model 7 extends the analysis to an alternative anthropometric indicator, child 

wasting. The results are very weak, positive but insignificant only in half the surveys. The full 

results of Models 1–7 are presented in Tables A4–A10. These reveal some interesting patterns 

about demographic and socioeconomic covariates, but these results are outside the scope of our 

analysis, and are only briefly discussed in the appendix. 

 

4.2. Infant mortality models 

 

Models 8–15 are concerned with the analogous effects of energy deprivation on child mortality, 

controlling for children’s demographics and socioeconomics. It should be noted that mortality 

models account for only those factors that are available for both living and deceased children. 

Moreover, because infant deaths are relatively rare (refer to Table 1), we are restricted to using 

only those covariates that vary adequately in both outcome groups.6 As a result, the results are 

 
6 For instance, there are incidentally no infant deaths in female headed households in TUN ‘12, so this factor is omitted. 
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weaker than those for children’s stunting. In Models 8–11, according to the MEPI (instrumented 

or not), dirty cooking fuels or MEP PCA, energy deprivation is associated positively with infant 

mortality in most surveys, significantly in MAR ‘18, TUN ‘12, TUN ‘23 and TUR ‘13. MEP PCA 

also has a significant positive effect in IRQ ’18 and PAL ‘20. 

 

In Models 12 and 13, extreme temperatures 9 months before birth tend to have a weak negative 

effect on infant mortality (significant in IRQ ’11 and ’18, MRT ’21, PAL ’14 and TUR ’19, but 

positive significant in COM ’22). The effect of extreme temperatures 12 months post birth differs 

across surveys, with positive significant effects in COM ’12, IRQ ’18 and MRT ’15, but negative 

significant effects in EGY ’12, IRQ ’11 and JOR ‘18. Partialling out the effects of extreme 

temperatures, in Model 13, does not appear to affect the estimates on MEPI consistently across 

surveys. MEPI has a significant positive effect only in MAR ’18 and TUN ‘12, but a significant 

negative effect in COM ’22. 

 

In lower-income and conflict-affected settings such as COM ’12, IRQ ’18 and MRT ’15, the results 

on temperature extremes may suggest the vulnerability of the population to agricultural output 

amid climate variability. As crop production declines because of climate change, tropical and poor-

governance societies that depend on rain-nourished agriculture are most affected. Developing 

nations in North Africa are particularly vulnerable among the countries considered, with 

unpredictable rainfall patterns and extreme temperatures having negative impacts on agricultural 

output (Davenport et al., 2017). 

 

The last models, Models 14 and 15, evaluate the effect of energy deprivation or temperature 

extremes on neonatal mortality as a more immediate health impact compared to broader infant 

mortality. The estimated effects are small economically and insignificant throughout. All in all, 

the results in Table 4 (and Tables A4–A18) suggest that energy deprivation has modest positive 

effects on longer-term anthropometric growth (i.e., stunting) across most countries, but the effects 

on shorter-term or more acute health indicators, including wasting and mortality, are limited. For 

the more serious health outcomes and risks of dying, other factors presumably play much more 

critical roles. 

 

Comparing the results for alternative measures of energy deprivation, MEPI appears to be 

marginally stronger at explaining children’s outcomes than MEP PCA, and clearly more relevant 

than other measures of indoor/outdoor environmental conditions including the dirty cooking fuels 

and extreme temperatures. Among the most significant models corroborating the deleterious effect 

of energy deprivation on children’s health is one allowing for the interaction between MEPI and 

temperature extremes. Disentangling the effects of indoor and outdoor climate conditions seems 

to help distilling the effect of the indoor deprivations – by reducing error variances – even though 

there is no clear complementarity or offsetting between them. 

 

Finally worth noting, the marginal effects have been compared across the survey waves for the 

same countries, and we find that the effects typically increase weakly over time. This, taken 

together with the time trends in energy deprivation and weather extremes (Tables A2–A3), 

suggests a greater vulnerability of children’s health to environmental conditions. The following 

section evaluates this more directly by pooling survey waves together. 
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4.3 Pooled-survey regressions 

 

Pooling the survey rounds in each country allows us to control for unobserved country-specific 

factors that are time-invariant, such as living norms, institutions, or geographic characteristics, 

which could potentially influence childcare and nutritional habits and other practices that affect 

children’s health and mortality. (The one survey for Jordan is included for completeness, but the 

results are identical to those in Table 4). Pooling survey rounds also increases the overall sample 

size and variation in the explanatory variables, thereby potentially improving the precision of the 

estimates and enhancing the statistical power of the analysis. Substantively, this allows us to 

examine both cross-sectional variations and longitudinal variations in the data, providing valuable 

insights into how the relationship between energy deprivation, temperature extremes and child 

health outcomes vary across different development contexts. 

 

Table 5 and Figures 1–2 take stock of the evidence in Table 4, and present the results of selected 

pooled regressions, using MEPI for indoor climate conditions (Models 16 and 18) or temperature 

extremes for outdoor climate conditions (Models 17 and 19). We again control for the full set of 

household characteristics including the administrative regions of residence. The results again 

confirm that MEPI has a positive effect in all countries but Iraq, significant for Morocco, Palestine 

and Tunisia. 

 

In Model 17, the occurrence of extreme temperatures in the 9 months before birth has no clear 

association with children’s stunting rates. The association is negative significant in Iraq and 

Mauritania, but positive significant in Jordan and Palestine. Extreme temperatures in the 12 months 

after birth are associated positively with stunting in Egypt and Tunisia, but negatively in Iraq. The 

joint significance tests on the two temperature-extremes variables do not resolve the mixed results. 

In Egypt, Jordan and Palestine, the two temperature-extremes variables are jointly significant and 

pointing to clear detrimental effects of climate change on stunting, but in Iraq and Mauritania they 

point significantly toward the unexpected negative effects on stunting. 

 

Models 18 and 19 show the equivalent pooled-survey analysis for infant mortality. Energy 

deprivation as measured by MEPI is shown to have mixed effects across the countries, only 

significantly positive in Tunisia and Turkey. İpek and İpek (2024) also identified a significant 

impact of energy poverty on health in Turkey between 2018 and 2021. Lastly, Model 19 

corroborates the unclear association from Table 4 between extreme temperatures (both before and 

after birth) and children’s mortality. The two variables jointly (significantly) only point to a 

positive effect on mortality in Comoros, while they point to a negative effect in Palestine, Tunisia, 

and partially in Iraq. The weak results for infant mortality broadly are perhaps not surprising, since 

in most countries infant mortality has been on decline due to factors such as rising income, 

improving access to healthcare, lifesaving vaccines, and cleaner water and sanitation. Our analysis 

essentially tries to distill how the ever more extreme temperatures may be slowing the already very 

strong worldwide secular trend, and clearly their partial explanatory power is weak. As we 

concluded in Table 4, outdoor and particularly indoor climate conditions appear to have gradual 

detrimental effects on less severe health outcomes, but little effects on acute, immediately-

observable outcomes – perhaps a silver lining to a grim story. 
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Figures 1 and 2 visualize the estimated effects and confirm the detrimental stunting effects of 

MEPI in most countries - particularly Algeria, Comoros, Morocco, Mauritania, Palestine, Tunisia 

and Turkey, but weaker mortality effects - mostly in Algeria, Morocco and Tunisia. 

 

4.4 Research limitations 

 

The analysis described above has various limitations that should be addressed in follow-up 

research. There are geographical data restrictions due to the fact that DHS data include only 

‘admin1’ variables for provinces, while ‘admin2’ and ‘admin3’ variables, reflecting districts and 

sub-districts, are available only in shapefiles and not included for all survey waves. 

 

Similar reservations apply to DHS geospatial covariate datasets. Jordan is the only country with 

detailed province-level variables in the main DHS dataset.  This limits data merging with satellite 

images at finer disaggregations. DHS data providers should emphasize improving the quality and 

comprehensiveness of data, especially geographical locations, to facilitate merging with climate 

change and natural disaster datasets. Harmonization of variable names in DHS would also assist 

with further research. There should be standardized variable names across different countries and 

survey rounds to ensure consistency and ease of data integration. 

 

Following research should explore gender differentiation regarding the disproportionate effects of 

energy poverty on girls. Girls often bear the burden of collecting traditional energy sources, 

leading to adverse health outcomes and limited access to developmental opportunities. 

 

While the present analysis used limited measures of energy poverty, other proxies should be 

evaluated. Carbon monoxide emissions (carbon monoxide surface concentration, COSC) can be 

utilized as a proxy for anthropogenic emissions. This measurement, expressed in parts per billion 

by volume, indicates the amount of CO near the ground, which is crucial for assessing air quality 

and its impact on human health and the environment (Jessel et al., 2019). The Modern-Era 

Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) provides a 

comprehensive dataset for analyzing these emissions. MERRA-2 offers time-averaged, two-

dimensional monthly mean data for assimilated carbon monoxide and ozone diagnostics, covering 

the period from 1980 to the present with a spatial resolution of 0.5° x 0.625°. Precipitation 

anomalies should also be introduced to investigate the role of precipitation as a climate change 

variable using the CPC Unified Gauge-Based Analysis of Daily Precipitation and CPC Global 

Unified Temperature data provided by NOAA PSL.7 As yet another measure of climate change, 

natural disasters data from Emergency Events Database (EM-DAT) from the OFDA/CRED 

International Disaster Database can be integrated with DHS data. This dataset includes variables 

such as top disasters, number of fatalities, number of affected individuals, and average annual 

disaster occurrence by type. Lastly, temperature and precipitation data from the World Bank 

Climate Change Knowledge Portal, which provides information by country and province, could 

be used. These data can be merged with DHS and used in models as a robustness check instead of 

relying solely on NOAA CPC data.

 
7 These datasets are accessible from their website at https://psl.noaa.gov. 
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Table 4. Average marginal effects of key variables from probit regressions on child health outcomes, regressions on separate survey waves 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

The baseline group is newborn boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old, mortality evaluated during 5 years before survey. 
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Table 5. Average marginal effects of key variables, regressions on pooled survey waves by country 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

The baseline group is newborn boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old, mortality evaluated during 5 years before survey. 
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Figure 1. Fitted probability of stunting by MEPI score, by child’s sex and household wealth quantile, regressions on pooled survey rounds 

(model 16) 
Algeria (2013–2019) Comoros (2012–2022) Egypt (2014–2021) 

   
   

Iraq (2011–2018) Jordan (2012) Morocco (2011–2018) 
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Figure 1. Fitted probability of stunting by MEPI score, by child’s sex and household wealth quantile, regressions on pooled survey rounds 

(model 16) (Continued) 
Mauritania (2011–2021) Palestine (2014–2020) Tunisia (2012–2018) 

   
   

Turkey (2013)   

 

  

Notes: These estimates come from Model 16 in table 6b, accounting for demographics but excluding temperature extremes variables in order to show the effects of MEPI clearly. Probabilities shown 

are the median expectations among individuals of each gender and wealth group facing MEPI scores within 0.05-point intervals. Jordan 2012 is excluded because of missing anthropometrics, and 

Turkey 2019 because of missing energy indicators. 
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Figure 2. Fitted probability of mortality by MEPI score, by child’s sex and household wealth quantile, regressions on pooled survey rounds 

(model 18) 
Algeria (2013–2019) Comoros (2012–2022) Egypt (2014–2021) 

   
   

Iraq (2011–2018) Jordan (2012–2018) Morocco (2011–2018) 
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Figure 2. Fitted probability of mortality by MEPI score, by child’s sex and household wealth quantile, regressions on pooled survey rounds 

(model 18) (Continued) 
Mauritania (2011–2021) Palestine (2014–2020) Tunisia (2012–2018) 

   
   

Turkey (2013)   

 

  

   

Notes: These estimates come from Model 18 in table 6b, accounting for demographics but excluding temperature extremes variables in order to show the effects of MEPI clearly. Probabilities shown 

are the median expectations among individuals of each gender and wealth group facing MEPI scores within 0.1-point intervals. Turkey 2019 is excluded because of missing energy indicators. 

 



 

25 

 

5. Conclusions and policy implications 

 

Our study, particularly the estimated effects of energy deprivation on stunting in most countries, 

highlights the importance of addressing energy poverty as part of broader efforts to combat health 

and nutrition deprivations. First, our study underscores the complexity and the need for better 

conceptualizing energy poverty and its multifaceted relationship with socioeconomic 

development. Second, our findings provide valuable insights for policymakers aiming to formulate 

targeted interventions to alleviate energy poverty and promote sustainable development. 

 

Our findings underscore the intricate interplay of socioeconomic, demographic, and environmental 

factors in shaping children’s health status in MENA countries. The use of the MEPI as a proxy for 

household energy poverty confirms a significant association between higher MEPI scores and 

increased probability of stunting across most countries. Notably, socioeconomic disparities, 

gender dynamics, education levels, and household characteristics significantly influence stunting 

outcomes. In some countries, stunting is significantly more prevalent among children in female 

headed households, in others, lower education and lower wealth are also associated with higher 

prevalence of children's health problem. These findings highlight the importance of gender-

sensitive and socio-economic specific interventions to address nutritional disparities within and 

across households. 

 

This implies that energy poverty, characterized by restricted access to contemporary energy 

sources, may heighten the risk of malnutrition, particularly in resource-constrained settings. 

Addressing the underlying causes of children’s health problems requires a multifaceted approach, 

including women's empowerment, education interventions, poverty reduction, and focused 

healthcare activities tailored to vulnerable populations. Further research is necessary to ensure 

gender-responsive interventions and to explore contextual factors contributing to potential biases 

in data collection and reporting due to gender discrimination. 

 

Our study has emphasized the unique challenges faced by MENA countries, including their diverse 

climates, energy resource profiles, political dynamics, and living norms, all of which influence 

energy transitions and their health implications. As both resource-rich and resource-poor nations 

in the region pursue decarbonization and energy diversification, this study highlights the 

importance of putting children’s health on policy agendas. As the emerging generation of 

stakeholders, children’s welfare should be a cornerstone in shaping effective strategies to alleviate 

energy poverty, promote equitable access to clean energy, and foster sustainable development. 

 

In light of the findings of this study, several targeted policy implications can be proposed: i) 

enhanced access to clean energy for households, ii) expanded infrastructure investment in modern 

and clean energy sources, particularly in rural and underserved areas, iii) rolling out of renewable 

energy projects such as solar and wind power, iv) subsidies and financial incentives for households 

to transition from traditional fuels to cleaner energy sources, v) promoting integrated health 

services that address both energy poverty and child malnutrition, vi) providing nutritional support 

and healthcare services in localities with high energy poverty rates, vii) strengthening disaster 

preparedness and response systems to better handle the impacts of extreme weather events 

(including early warning systems and emergency healthcare services), viii) expanding cash 

transfer programs aimed at the poorest households to alleviate energy poverty, ix) fostering 
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regional cooperation among MENA countries to share best practices and resources in combating 

energy poverty and improving child health, and x) seeking international funding and technical 

assistance from international donors to support the implementation of these policies. By addressing 

energy poverty and its health impacts through these targeted policies, MENA countries can 

improve child health outcomes and foster sustainable development in the region. 
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Appendix 

 

This appendix presents additional tables supplementing the analysis in the main text. Table A1 

supplements the literature review with the evolution of definitions of energy poverty. Tables A2 

and A3 report selected summary statistics. Tables A4–A18 supplement the key results presented 

in Table 4. Tables A19–A22 supplement the results in Table 5. 

 

In stunting models – Tables A4–A10 – female-headed households exhibit a higher prevalence of 

stunting among children, particularly in JOR‘12, MRT’21 and TUR‘13. This underscores the need 

for gender-sensitive interventions to address nutritional disparities within households. Girls in 

ALG ‘19, EGY ‘14, IRQ ‘11, PAL ‘14 and TUR ‘13 are less susceptible to stunting compared to 

boys. The negative marginal effect for girls in relation to stunting may seem counterintuitive, but 

it underscores the complexity of factors influencing the evolution of child growth. It is possible 

that biological differences between genders affect the susceptibility to stunting. For instance, 

hormonal differences may influence nutrient absorption and metabolism differently in males and 

females (Headey et al., 2016; Pande, 2003). Further research is needed to explore the underlying 

mechanisms and contextual factors contributing to this phenomenon, to ensure that policy 

interventions effectively address the nutritional needs of all children, regardless of gender. 

Advancing age is associated with an increased likelihood of stunting in several countries, 

indicating that older children may face prolonged exposure to nutritional deficiencies, 

exacerbating the risk of stunted growth at a decreasing rate. The education attainment of both 

fathers and mothers significantly influences stunting outcomes in some countries. Higher levels of 

parental education are generally associated with reduced probabilities of stunting among children, 

emphasizing the importance of education in improving child nutrition outcomes.  

 

Household characteristics also play a role in child stunting. Children residing in rural areas are 

more likely to experience stunting compared to their urban counterparts. This rural-urban disparity 

underscores the need for targeted interventions addressing the challenges faced by rural citizens. 

Household wealth status plays a pivotal role in determining children's nutritional status. Wealthier 

households, as observed in ALG‘13, EGY‘21, MRT’21, PAL’14 and PAL’20, demonstrate lower 

probabilities of stunting, indicating the protective effect of socioeconomic prosperity against 

health and nutrition deprivation. 

 

In child mortality models – Tables A11–A18 – infant girls are seen to have a lower mortality rate 

than boys, a common finding. Fathers’ education has a mixed record of association with infant 

mortality, while mothers’ higher education is typically associated with lower mortality rates, 

especially the (excluded) highest level of education. Similarly, household wealth is associated 

negatively with mortality, especially the (excluded) highest wealth quintile. 

 

Considering Models 1–15 (Tables A4–A18) in their entirety, we find a high degree of consistency 

and robustness of their results. The substantial number of observations and clusters ensures the 

reliability and robustness of the estimated marginal effects, confirming the statistical validity of 

the findings. The traditionally used criteria (pseudo-R2, model Chi2 – available on request) confirm 

a high degree of model fit and show that the selected sets of covariates explain a non-trivial share 

of children’s predisposition for stunting, and even wasting and infant mortality. Nevertheless, 
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energy deprivation is just one factor affecting children’s health – according to the model (pseudo-

)R2, less than 10% of the variation in the children’s likelihood of stunting, wasting, infant mortality 

and neonatal mortality is explained by the considered variables. 

 

Tables A19–A22 report on the regressions on pooled surveys for each country (Models 16–19). In 

Model 16, being a girl is associated with lower probability of stunting in the majority of countries. 

This result needs to be interpreted with caution however, since international anthropometric 

standards on height may need to be better adapted to region-specific trends before we can safely 

conclude that girls are less likely to be stunted. Wealth is associated with lower stunting, except in 

Jordan and Mauritania.  
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Table A1. The evolution of definitions of energy poverty  

Author Energy Poverty Index (EPI) 
Relationship with 

Economic development Children’s health Energy transition 

Boardman 

(1991) 

a single index method is proposed, which indicated that if energy expenditure 

exceeded 10% of household income, household was said to be energy poor. 

      

IEA (2011) a single index measurement was proposed to assess the process of a region's 

transition to modern fuels.  

      

Nussbaumer et 

al. (2012) 

a new index, the MEPI, was developed to test the deprivation of access to 

modern energy services.  

      

Amin et al. 
(2020) 

they measured EPI by the % of the population who have access to electricity. energy poverty has a negative 
impact on economic 

development in both the short-

run and long-run in the 
sampled South Asian 

countries. 

    

Zhang et al. 

(2021a) 

MEPI that considers the economic condition as well as clean energy adoption 

practices at the household level using China Family Panel Studies dataset. To 

construct MEPI, they assign relative weights to five indicators, including 
cooking, lighting, household appliance ownership, entertainment/education, 

and communication. 

 energy poverty has a negative 

impact on children's 

subjective wellbeing, and that 
academic performance is an 

important channel through 

which energy poverty lowers 

children’s subjective 

wellbeing. 

 

Rafi et al. 
(2021) 

multidimensional measure of energy poverty, which focuses on quantifying 
energy deprivation, covering both accessibility to and affordability of a broad 

range of energy forms. 

 energy poverty has significant 
negative effects on children’s 

health and educational 

achievements. 

 

Dong et al. 

(2021b) 

energy structure (denoted as ES) by employing the proportion of the sum of 

coal and oil consumption converted into standard coal by the conversion 

coefficient in total energy consumption. 

  low-carbon energy transition 

can affect the reduction of 

energy poverty by having an 
impact on the energy services 

availability, energy 

cleanliness, as well as 

affordability and efficiency of 

energy use. 
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Xie et al. 
(2022) 

by setting an energy poverty line, given its wide acceptance in literature and its 
objectivity in measurement. Following Boardman (2010), twice the median 

proportion of energy expenditure in household income is taken as the energy 

poverty line. energy poverty measured in the following three dimensions: (1) 
energy poverty gap, which is defined as the gap between actual energy 

expenditure and someone energy expenditure threshold; (2) the breadth of 

energy poverty, which is defined as the proportion of households whose energy 
expenditure ratio is below the energy poverty line; and (3) the depth of the 

energy gap, which is defined as the distance between threshold energy 

expenditure and the average energy expenditure of households in energy 
poverty. 

it observed that the low-
income, and less educated 

households are the ones who 

have high probability in 
experiencing energy poverty. 

  energy poverty increased 
significantly when coal was 

replaced with electricity and 

gas. However, energy poverty 
decreased when it was 

replaced with clean coal.  

Okushima 

(2016) 
change in domestic energy prices (as measured by the energy consumer price 

index, the energy CPI) in Japan after the 2000s.  

‘Energy price’ is a composite index of electricity, gas, and other fuels 

(kerosene) prices using the 2010 official weights. 

the findings show that 

throughout the previous ten 

years, energy poverty among 

lower-income and vulnerable 

households has gotten worse 

due to a combination of rising 

energy prices and declining 

income. 

  

Papada & 

Kaliampakos 

(2018) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑜𝑣𝑒𝑟𝑡𝑦 𝑖𝑛𝑑𝑒𝑥

=
𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡𝑠 (𝑖. 𝑒. 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑥 𝑝𝑟𝑖𝑐𝑒)  

𝐼𝑛𝑐𝑜𝑚𝑒
 

the basic household energy uses in Greece were taken into consideration: 

● Space heating 

● Space cooling 

● Domestic hot water 

● Cooking, lighting and electrical devices 

The results showed that 

Greece has a rate of energy 

poverty of 70.4%. Income is 

the key factor influencing 

energy poverty, accounting 

for 63% of the total, while 

other variables (Htot, etc.) 

follow at much smaller 

percentages. 
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Table A2. Description of survey samples 

 Survey instrument 

Households 

(complete 

interviews) 

Ever-married 

women 15–49 in 

women’s module 

(complete int.) 

Children younger 

than 5 covered by 

responding women 

(complete int.) 

Live births covered 

by responding 

women 

Algeria ‘12-13 MICS 27,198 38,547 14,701 53,668 

Algeria ‘18-19 MICS 29,919 37,227 14,889 50,679 

Comoros ‘12 DHS 4,482 3,149 2,886 11,497 

Comoros ‘22 MICS 6,158 6,945 4,497 16,533 

Egypt ‘14 DHS 28,175 59,266 56,568 15,848 

Egypt ‘21 FHS 30,667 21,267 15,785 59,490 

Iraq ‘11 MICS 35,701 55,194 33,908 13,994 

Iraq ‘18 MICS 20,214 30,660 16,689 70,986 

Jordan ‘12 DHS 15,190 10,304 6,350 8,462 

Jordan ‘17-18 DHS 7,176 10,529 10,210 47,040 

Mauritania ‘11 MICS 10,320 13,657 9,543 30,335 

Mauritania ‘15 MICS 11,765 14,342 10,663 37,506 

Mauritania ‘19-21 DHS 6,391 19,941 11,176 39,793 

Morocco ‘11 PAPFAM 15,343 11,069 6,117 8,136 

Morocco ‘18 NSPFH 15,022 9,969 6,662 6,332 

Palestine ‘14 MICS 10,182 13,367 7,816 7,948 

Palestine ‘19-20 MICS 9,326 11,135 6,328 25,482 

Tunisia ‘11-12 MICS 9,171 10,215 2,899 2,977 

Tunisia ‘18 MICS 11,225 10,559 3,420 14,058 

Tunisia ‘22-23 MICS 8,937 7,140 1,926 9,415 

Turkey ‘13 DHS 11,794 9,746 3,487 3,326 

Turkey ‘18-19 DHS 11,056 7,346 2,979 2,568 

Notes: Sample sizes are only partially standardized due to differences in format, variable coverage, and missing observations in individual surveys. 

Samples sizes used in regression models may be lower than these numbers due to missing data for dependent or explanatory variables, or perfect 

prediction of probability-model outcomes among some explanatory variables for some observations. “--” indicates missing data for a particular survey 

module. * Currently unavailable. 
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Table A3. Summary statistics of variables in stunting regression samples 

 

Notes: Standard deviations in parentheses. Child samples are nationally weighted.
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Table A4. Average marginal effects from probit regressions of stunting on MEPI scores, instrumental variable approach (Model 1) 

 

Notes: MEPI scores are instrumented using first-stage regressions in Table A21. Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in 

parentheses are heteroskedasticity robust and clustered at the household level. In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, 

and fathers of unknown educational attainment – but some covariates had to be removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old. 
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Table A5. Average marginal effects from probit regressions of stunting on MEPI scores (Model 2) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old.  
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Table A6. Average marginal effects from probit regressions of stunting on dirty cooking fuels indicator (Model 3) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old. 
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Table A7. Average marginal effects from probit regressions of stunting on MEP PCA scores (Model 4) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old. 
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Table A8. Average marginal effects from probit regressions of stunting on temperature extremes (Model 5) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old. 
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Table A9. Average marginal effects from probit regressions of stunting on MEPI scores and temperature extremes (Model 6) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old. 
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Table A10. Average marginal effects from probit regressions of wasting on MEPI scores (Model 7) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old. 
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Table A11. Average marginal effects from probit regressions of infant mortality on MEPI scores, instrumental variable approach (Model 8) 

 

Notes: MEPI scores are instrumented using first-stage regressions in Table A22. Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in 

parentheses are heteroskedasticity robust and clustered at the household level. In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, 

and fathers of unknown educational attainment – but some covariates had to be removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old, mortality evaluated during 5 years before survey. 
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Table A12. Average marginal effects from probit regressions of infant mortality on MEPI scores (Model 9) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 
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Table A13. Average marginal effects from probit regressions of infant mortality on dirty cooking fuels indicator (Model 10) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 

 

  



 

48 

 

Table A14. Average marginal effects from probit regressions of infant mortality on MEP PCA scores (Model 11) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 
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Table A15. Average marginal effects from probit regressions of infant mortality on temperature extremes (Model 12) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 

 

  



 

50 

 

Table A16. Average marginal effects from probit regressions of infant mortality on MEPI scores and temperature extremes (Model 13) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 
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Table A17. Average marginal effects from probit regressions of neonatal mortality on MEPI scores (Model 14) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 
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Table A18. Average marginal effects from probit regressions of neonatal mortality on temperature extremes (Model 15) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

In most regressions, the baseline group is boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment – but some covariates had to be 

removed because of their values’ perfect association with mortality outcomes. Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated 

during 5 years before survey. 
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Table A19. Average marginal effects from probit regressions of stunting on MEPI scores, regressions on pooled survey waves (Model 16) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

The baseline group is newborn boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old. 
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Table A20. Average marginal effects from probit regressions of stunting on temperature extremes, regressions on pooled surveys (Model 17) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

The baseline group is newborn boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old.  
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Table A21. Average marginal effects from probit regressions of infant mortality on MEPI scores, pooled surveys by country (Model 18) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

The baseline group is newborn boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old, mortality evaluated during 5 years before survey. 
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Table A22. Average marginal effects from probit regressions of infant mortality on temperature extremes, pooled surveys by country (Model 

19) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

The baseline group is newborn boys in male-headed urban wealthy households with highly educated mothers, and fathers of unknown educational attainment. Child samples are nationally weighted. 

Regressions evaluated among children 12–59 months old, mortality evaluated during 5 years before survey. 
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Table A23. First-stage regression results (sample for children’s stunting Model 1 in Table A4) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

Child samples are nationally weighted. Regressions evaluated among children 12–59 months old. 

 

Table A24. First-stage regression results (sample for infant mortality Model 8 in Table A11) 

 

Notes: Variable AMEs are reported, significant at 10 percent *, 5 percent **, and 1 percent *** level. Standard errors in parentheses are heteroskedasticity robust and clustered at the household level. 

Child samples are nationally weighted. Regressions evaluated among children 12–59 months old, mortality evaluated during 5 years before survey. 
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Figure A1. Map illustrating the MENA region with the studied countries highlighted 

 

Source: Authors’ graphic created using data from Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA USGS, AeroGRID, IGN, 

and the GIS User Community. 

 

Figure A2. MEPI estimates and components across survey waves 

 

Notes: The indicators are taken from Table 3. Samples are nationally weighted.
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Figure A3. Annualized changes in children’s health outcomes, MEP rate (𝐻), and extreme temperature 

deviations from historic norms (% points) 

 

Notes: The indicators are taken from Tables 1 and 3. Samples are nationally weighted.
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Figure A4. Association between changes in climate change indicators, and children’s stunting and infant mortality, country level 

 

 

Note: Algeria 13–19 omitted from panel (c) for its outlying value. 

 


