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Abstract 

Technical issues with income datasets and heterogeneous statistical approaches for addressing 

them give rise to discrepancies in poverty estimates across different studies. We assess how 

alternative parametric modeling approaches perform under various modes of data granularity. 

We use a large worldwide set of household income surveys – including notably conflict-affected 

and high-income countries in the MENA region – on which we artificially impose one of four 

alternative degrees of data granularity: individual-level microdata, random extraction from the 

microdata, grouped data, and a pair of basic distributional statistics. We then correct for the data 

limitations, and estimate poverty headcount ratio and poverty gap, using several parametric 

distribution functions advanced in prior studies. We find that, when only basic distributional 

statistics are available, lognormal and Fisk distributions demonstrate a similar, moderate degree 

of estimation accuracy, compared to other functional forms. With grouped income data, three- 

and four-parameter models, particularly the beta and generalized beta functions, perform well. 

With microdata, three- and four-parameter models again outperform two-parameter models. 

These findings underscore the accurate fit of four-parameter models in various data 

environments, particularly compared to two-parameter alternatives. The findings also highlight 

the challenges in modeling the bottom of income distributions when only basic distributional 

statistics are available. 
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1. Motivation 

Technical inconsistencies in income datasets and statistical approaches to addressing them often 

give rise to discrepancies in poverty estimation across different studies. This includes the use of 

different data sources or measurement instruments, different granularity of data, choice of 

welfare aggregate such as income or consumption, choice of limiting assumptions about the 

shape of the distribution, and the application of different poverty lines. 

These considerations are particularly relevant in developing and conflict-affected countries such 

as those across the MENA region, where data collection and dissemination are highly politicized 

and data quality may be compromised. For instance, data may not be nationally representative, or 

some geographic or demographic groups may be omitted entirely. Some statistical agencies also 

provide only limited subsamples such as 25–75% of the original survey microdata, or report only 

grouped-data information or basic distributional statistics. Agencies in other developing 

countries provide top or bottom coded data. 



To what extent do the discrepancies in poverty estimates stem from the alternative estimation 

methods deployed in response to limited data availability? This study evaluates poverty estimates 

obtained under different modes of data availability, using microdata from 800+ income and 

consumption surveys from 60+ countries worldwide, including 28 surveys from 7 MENA 

countries. This database encompasses diverse country-income groups, geographic regions, and 

years from the 1950s to the 2020s. These surveys are obtained from the Luxembourg Income 

Study (LIS) database. Most are nationally-representative and harmonized, ensuring consistent 

definitions of incomes or expenditures (henceforth for simplicity: incomes) and sampling 

parameters such as population weights. 

We consider three scenarios for the counterfactual restrictions on data availability. The first 

scenario consists of the unrestricted raw microdata themselves, comprising detailed household 

income values for all surveyed households. As a modality on the first scenario, microdata are 

randomly subsampled, to only feed 25–75% of observations into the analysis. 

In the second scenario, grouped data for income distributions are utilized. This may involve 

information on income and population shares (a.k.a., Lorenz coordinates) of specific population 

strata, such as income quantiles. The third scenario restricts the data availability to just two 

summary statistics such as the mean and the Gini coefficient of inequality. 

These data-availability scenarios are quite realistic given that data repositories such as the World 

Income Inequality Database, the World Bank’s Poverty and Inequality Platform (PIP), and the 

World Inequality Database also report data in these formats.  

For each country–year observation (including some cases where 2 alternative surveys exist in the 

LIS database for the same country–year), the three scenarios of data availability are constructed 

and used in estimating poverty parametrically, one scenario at a time. While numerous 

parametric functional forms have been proposed in extant literature for poverty and inequality 

studies, no prior study has investigated systematically whether data-availability constrains the 

accuracy of poverty estimation and to what extent. This analysis sheds light on the singular 

impact of the modalities of data availability on parametric estimation of poverty. 

The rest of the study is organized as follows. Section 2 first summarizes the data format for each 

scenario and reviews the literature on the most applicable parametric functional models for 

estimating poverty under that scenario. Next, we highlight the performance of each functional 

form within each data-availability scenario, and undertake a theoretical assessment of the 

alternative approaches. Section 3 proposes an application of all the proposed parametric 

functional forms across all three data-availability regimes using the LIS database. Finally, 

section 4 presents the sensitivity of poverty estimates across various functional forms within 

each data-availability regime and, critically, between all three regimes of data availability. 

Section 5 concludes. 

 

2. Models of Income Distribution: Literature Review 



The study of income poverty or inequality often requires researchers to model income 

distributions with functional forms that reflect real-world income dynamics. However, data 

limitations—such as the common availability of only distributional statistics, grouped or 

tabulated income data, rather than complete microdata—have long challenged these efforts. 

Consequently, a variety of mathematical models have been developed to work with data in 

various forms, enabling the analysis of income distributions even in the absence of complete 

data. 

To estimate income distributions and assess poverty accurately, researchers have employed both 

parametric and non-parametric techniques. Non-parametric techniques, including simple linear 

or quadratic interpolation and kernel density estimation, are often used to construct empirical 

Lorenz curves from available data. Parametric methods on the other hand estimate the income 

density function whether based on unrestricted ('raw') microdata containing detailed household 

income/expenditure values; limited 'grouped data' (information on income and population shares 

– i.e Lorenz curve); or even just restricted grouped data using at least two summary statistics (the 

mean and the Gini coefficient of inequality). 

 

2.1 Non-parametric: Interpolation 

Linear or quadratic interpolation of income shares can be used to connect available Lorenz curve 

points based on income shares. While straightforward, interpolation methods can yield 

inaccurate estimates, particularly at specific points along the distribution. This approach, widely 

used in studies on global distribution of income inequality (Bourguignon and Morrison, 2002; 

Lakner and Milanovic, 2016), has often been noted to underestimate inequality, making relative 

inequality measures lower-bound approximations (Kakwani, 1980). 

 

2.2 Non-parametric: Kernel density 

Kernel density estimators, such as those applied by Sala-i-Martin (2006) for global poverty 

estimation and approximation of national income distributions, provide a more flexible non-

parametric alternative for grouped data. However, a comparison between kernel density 

estimation and parametric estimation of the Lorenz curve—both applied to grouped data—

suggests that the latter performs better and should be the preferred approach (Minoiu and Reddy, 

2014). 

 

2.3 Parametric 

Parametric models, meanwhile, offer a structured approach that typically outperforms non-

parametric techniques in poverty estimation from grouped data (Dhongde and Minoiu, 2013; 

Bresson, 2009; Jorda et al., 2018). These methods require an ex-ante assumption about the 

underlying income distribution shape, and depending on data availability, may be applied to raw 

microdata, grouped data, or even summary statistics like mean income and inequality metrics.  



 

Parametric: Microdata 

When observed income data are available, the parameters of parametric income distributions can 

be estimated through methods like Maximum Likelihood Estimation, quantile matching, or 

multinomial likelihood functions. These techniques, however, face challenges with heavy-tailed 

distributions allowing the presence of extreme values. For example, Cowell and Flachaire (2007) 

contend that standard bootstrapping techniques often perform poorly for income distributions 

with a heavy-tailed shape, such as those in the GB2 family, resulting in inaccurate estimates of 

inequality. However, this issue can be mitigated by using a non-standard bootstrap; the 

semiparametric bootstrap has demonstrated superior performance compared to other methods, 

providing accurate inference in finite samples.  

 

Parametric: grouped data 

Given that microdata are frequently unavailable, researchers rely heavily on grouped data and 

summary statistics to estimate income distributions. Parametrized Lorenz curves such as the 

Generalized Quadratic and Beta Lorenz Curves are common parametric methods that have been 

adopted to estimate a complete Lorenz curve from limited data (Villasenor and Arnold, 1989; 

Kakwani, 1980; Minoiu and Reddy, 2009). 

 

Parametric: Restricted data 

When only restricted data are available, researchers can derive model parameters by solving a set 

of linearly independent equations, although this becomes increasingly complex as more 

parameters are added (Bourguignon, 2003). For instance, a two-parameter model can be easily 

derived using summary statistics such as mean and the Gini index, but a three-parameter model – 

such as the Singh–Maddala distribution – requires an additional statistic, like the Theil index. 

Due to the increasing complexity, it is advised to adopt an approach that focuses on estimating 

the Lorenz curve associated with each distribution (Bresson, 2009). 

 

GB2 family functions 

Among the various parametric families, the generalized beta distribution of the second kind 

(GB2) has gained prominence for modeling income distributions. The GB2 and its variants, 

widely used in national and global studies, have proven to fit income data across different 

countries and periods effectively (Feng et al., 2006; Hajargasht et al., 2012; Jorda and Niño-

Zarazua, 2019). McDonald (2008) demonstrated that, given any arbitrary estimation criterion, 

higher branches (with more parameters) typically yield improved fit as they retain more 

parameter flexibility.  



Historically, income distribution modeling began with the Pareto principle and evolved through 

the introduction of other strong candidate distributions such as the lognormal (Aitchison and 

Brown, 1957, Lopez et al., 2006). More recently, studies have shown that alternative functional 

forms, including the Gamma and Weibull (Pinkovskiy and SalaiMartin ,2009) and generalized 

Pareto distributions (Bourguignon et al., 2016) may provide a better fit than the lognormal 

(Bandourian et al., 2002). Other notable parametric forms, like those introduced by Maddala and 

Singh (1976) and Dagum (1977), as well as the generalized beta distribution, have been shown to 

capture complex income dynamics (Jenkins, 2009; Hajargasht et al., 2013). 

The estimation of parameters for these various functional forms heavily relies on data 

availability. Although this family of distributions offers flexible modeling options, it can present 

estimation challenges, particularly in country-specific studies where limited data may be 

available (Burkhauser et al., 2012; Jenkins et al., 2011). 

Our study contributes to the extant literature by examining how data limitations affect poverty 

estimation. We assess alternative parametric estimation approaches, systematically comparing 

the outcomes across data forms: summary statistics, grouped data, and detailed microdata. By 

comparing parametric methods across various data types—from aggregated summary statistics to 

microdata—our study highlights the effects of data constraints on poverty estimation accuracy 

and provides insights into potential discrepancies in poverty metrics. 

 

3. Methodology 

In this section, we outline the methodology employed for fitting a range of parametric distribution functions 

to income or consumption data under varying data availability scenarios. Our approach is structured to 

provide accurate parameter estimation for income distribution models, enabling consistent poverty 

measurements across different poverty line thresholds. 

 
3.1 Parameter estimation using grouped data (data regime I):  

In the first layer of analysis, we rely on aggregated summary statistics, specifically the average income 

(𝑣) and the Gini coefficient (𝐺). Based on these, we apply three parametric distributions – lognormal, 

Fisk, and an adjusted Pareto distribution referred to as New Pareto. The following paragraphs describe the 

parameter estimation techniques for each distribution. 

Table (1) summarizes the linear relationships between distribution parameters and the available aggregate 

statistics. The lognormal distribution function’s two parameters 𝜇 and 𝜎 are estimated using equations 1 

and 2. Similarly, equations 3 and 4 estimate the two parameters 𝑎 and 𝑏 for the Fisk distribution. 

The lognormal distribution is characterized by two parameters, 𝜇 and 𝜎, which can be directly estimated 

from the mean and Gini coefficient as in equations (1) and (2). For the Fisk distribution, two parameters, 

𝑎 and 𝑏 , are estimated using equations (3) and (4).  

The New Pareto distribution, parameterized by 𝛼 and 𝛽, involves a more complex estimation procedure. 

Due to the lack of a closed-form solution for the integral in equation (5), we numerically estimate 𝛼 based 

on the Gini coefficient, following the methodology proposed by Bourguignon (2016). Once 𝛼 is obtained, 



we determine 𝛽 by optimizing it according to the first moment equation (i.e., 𝐸(𝑌𝑟=1) = 𝑣) as specified 

in equation (6). This iterative approach ensures that both parameters align with the given summary 

statistics, allowing for a robust representation of income data.



Table 1 – Formal definition of parametric distribution functions 

 Parameters  

Lognormal 
𝜇 = log(𝑣) −

𝜎2

2
) 

 

𝜎 = √2 Φ−1 (
1 + 𝐺

2
) 

(1) 

 

 

(2) 

Fisk 𝑎 =
1

𝐺
 

 

𝑏 =
𝜇

Γ(1 +
1
𝑎

)Γ(1 −
1
𝑎

)
 

 

(3) 

 

 

 

(4) 

New 

Pareto 𝐺 = 1 − 2 ∫ 𝐿(𝑝)𝑑𝑝
1

0

= 1 −
2

𝛼
𝛼 − 1

 2𝐹1 (1, −
1
𝛼

; 2 −
1
𝛼

; −1)
∫ ∫ (

1 + 𝑡

1 − 𝑡
)

𝑝

0

1
𝛼

𝑑𝑡𝑑𝑝
1

0

 

 

𝐸(𝑌𝑟) = 2 ∗ 𝛼 ∗ 𝛽𝛼 ∫
𝑦𝑟+𝛼−1

(𝑦𝛼 + 𝛽𝛼)2
𝑑𝑦 =

2 ∗ 𝛼 ∗ 𝛽𝑟 2𝐹1 (2,2 −
𝑟 + 𝛼

𝛼
; 3 −

𝑟 + 𝛼
𝛼

; −1)

𝛼 − 𝑟

∞

𝛽

 

𝑜 < 𝑟 < 𝛼, 𝛽𝛼 ≠ 0 

 

 

(5) 

 

 

 

(6) 

 2𝐹1 (1, −
1

𝑎
; 2 −

1

𝑎
; −1) is a hypergeometric function



 

3.2 Parameter estimation using grouped data (data regime II) 

In the second layer of analysis, we incorporate additional data—specifically, grouped income data in 

conjunction with the mean income (𝑌̅) and the Gini index (𝐺)to estimate distribution parameters for models 

with a larger parameter space. The grouped data consists of cumulative population proportions, denoted 

as𝑐′ = (𝑐1, … , 𝑐𝑛−1, 1) which are treated as fixed values, and the corresponding cumulative income shares 

 𝑦′ = (𝑦1, … , 𝑦𝑛−1, 1) considered as random variables. 

This study focuses on the four-parameter generalized beta distribution of the second kind (GB2) and ITS 

related models, including the three-parameter distributions (such as Singh–Maddala (SM), Dagum, and 

Beta 2) and two-parameter distributions (such as Lognormal and Fisk). Each distribution has a cumulative 

distribution function (CDF), denoted as 𝐹(𝑦;  𝜃), and a Lorenz curve 𝐿(𝑐;  𝜃). Table 2 outlines the 

functional forms of each Lorenz curve for the selected models.1 

In addition to the maximum likelihood estimation using a multinomial likelihood function proposed by 

McDonald (2008), two econometric strategies are introduced to estimate these parametric distributions 

using the nonlinear least squares method: the equally weighted minimum distance (EWMD) estimator and 

the optimally weighted minimum distance (OMD) estimator. Both methods involve estimating the 

parameters by minimizing the distance between the observed cumulative income share (𝑦𝑛) and the 

theoretical Lorenz curve 𝐿(𝑐;  𝜃) based on the assumed income distribution. The main difference between 

the two estimators lies in the weight matrix: EWMD applies equal weights, while OMD employs variable 

weights (as discussed in Jorda et al., 2018). The EWMD estimates serve as starting values for the two-step 

OMD method. 

The EWMD shape estimator (denoted by 𝜃ℎ  ⊂  𝜃) is computed by minimizing the following objective 

function 

𝜃 = arg min
𝜃

𝑀(𝜃)′𝑀(𝜃), (7) 

 

where M(𝜃)= 𝐿(𝑐;  𝜃) − 𝑦 , represents the difference between the theoretical and observed moments, 

treated equally without any additional weighting matrix. 

Numerical optimization using the Levenberg-Marquardt Algorithm is implemented, which requires a 

starting value. For two-parameter distributions (with one shape parameter), the starting value is obtained – 

as in the first layer – by solving the Gini index expression  𝐺(𝜃ℎ) = 𝑔. For three-parameter distributions 

involving two shape parameters (𝜃1
ℎ , 𝜃2

ℎ) are needed, a grid search method is used to avoid local 

convergence of the equation above. A range of 𝜃1
ℎis defined, for each value, the second 𝜃2

ℎ is computed by 

solving for 𝐺(𝜃1
ℎ , 𝜃2

ℎ ) = 𝑔.  Equation (7) is then estimated over the grid ranges, retaining the parameters 

that yield the minimum residual sum of square.  

For the GB2 distribution, which includes three shape parameters, initial estimates are derived from 

restricted models (SM, B2, and Dagum) by setting one shape parameter to “1”. A similar approach as used 

for two-shape parameters is applied to each restricted model, resulting in a larger number of initial value 

 
1 Parameter estimation is performed using the fitgroup function in the GB2group package within RStudio. 



combinations that are used to generate different sets of estimates. The estimates with the smallest residual 

sum of squares are selected. 

Since the Lorenz curve is scale-independent (its shape is independent from the income unit of 

measurement), scale parameter (𝜃𝑠) could not be computed from above equation. Instead, it is determined 

by equating the observed mean income with the first moment expression of the specified 

distribution 𝐸(𝑌; 𝜃 ) =  𝑌̅, using the estimated shape parameters. Standard errors of parameter estimates 

are calculated by Monte Carlo simulation. 

The OMD estimation introduces a weight matrix and is carried out as 

𝜃 = arg min
𝜃

𝑀(𝜃)′ 𝛺−1𝑀(𝜃), (8) 

where 𝛺 is the variance-covariance matrix of the moment conditions (detailed in the appendix). This matrix 

depends on partial first and second moments, in addition to income class bounds which are not available. 

Consequently, consistent EWMD estimates are used to obtain an initial consistent estimate 𝛺̂. Given the 

large sample sizes, bias is not a concern. Substituting 𝛺̂ in Equation (8) yields the second-step OMD 

estimates. The sample size must be known to compute standard errors. 

Table 2 - Lorenz curve under each distributional form 

Distribution 𝑭(𝒙;  𝜽) 𝑬(𝑿;  𝜽) 𝑳(𝒑;  𝜽) 

GB2 

𝐵 (
(

𝑥
𝛽

)
𝛼

1 + (
𝑥
𝛽

)
𝛼 ;  𝒑, 𝒒) 

𝑏 𝐵 (𝑝 +
1
𝛼

, 𝑞 −
1
𝛼)

𝐵(𝑝, 𝑞)
, 

𝑞 >
1

𝑎
 

 

𝐿𝐺𝐵2(𝑐; 𝑎, 𝑝, 𝑞) = 𝐵 (𝐵−1(𝑐; 𝑝, 𝑞);  𝑝 +
1

𝛼
, 𝑞 −

1

𝛼
) 

Beta-2 
𝐵 (

𝑥/𝛽

1 + 𝑥/𝛽
;  𝒑, 𝒒) 

𝑏 𝐵(𝑝 + 1, 𝑞 − 1)

𝐵(𝑝, 𝑞)
, 

𝑞 > 1 

 

𝐿𝐵2(𝑐; 𝛼, 𝑞) = 𝐵(𝐵−1(𝑐; 𝑝, 𝑞);  𝑝 + 1, 𝑞 − 1) 

Singh–
Maddala 

1 − (1 + (
𝑥

𝛽
)

𝛼

)
−𝒒

 𝑏 𝛤 (1 +
1
𝛼)  𝛤 (𝑞 −

1
𝛼)

𝛤(𝑞)
, 

𝑞 > 1/𝑎 

 

𝐿𝑆𝑀(𝑐; 𝛼, 𝑞) = 𝐵 (1 − (1 − 𝑐)
1
𝑞; 1 +

1

𝛼
; 𝑞 −

1

𝛼
) 

Dagum 
(1 + (

𝑥

𝛽
)

−𝛼

)
−𝒑

 𝑏 𝛤 (𝑝 +
1
𝛼)  𝛤 (1 −

1
𝛼)

𝛤(𝑝)
, 

𝑎 > 1 

 

𝐿𝐷𝑎(𝑐; 𝛼, 𝑝) = 𝐵 (𝑐1/𝑝; 𝑝 +
1

𝛼
; 1 −

1

𝛼
) 

Lognormal 
𝛷 (

log 𝑥 −  𝜇

𝝈
) 

exp(𝜇 + 𝜎2/2) 𝐿𝐿𝑁(𝑐;  𝜎) =  𝛷(𝛷−1 (𝑐) −  𝜎) 

Fisk 
1 − (1 + (

𝑥

𝛽
)

𝜶

)
−1

 
𝑏 (𝜋/𝛼)

sin(𝜋/𝛼)
, 

𝛼 > 1 

𝐿𝐹(𝑐; 𝑎) = 𝐵 (𝑐; 1 +
1

𝛼
; 1 −

1

𝛼
) 

Shape parameters are in bold 

 

 



3.3 Parameter estimation using microdata (data regime III) 

In the third layer of analysis, parameters of two-parameter functional forms are estimated directly from 

microdata. While microdata provides rich detail, handling large samples requires careful consideration of 

several factors that can impact the accuracy and reliability of estimates. Outliers and data errors (such as 

zero, negative or extreme income values) may skew results, making it essential to apply data 

transformations to ensure meaningful estimates. Additionally, the choice of estimation method—whether 

Maximum Likelihood Estimation (MLE) or Generalized Method of Moments (GMM)—can significantly 

influence the stability and precision of parameter estimates. Adequate degrees of freedom are also necessary 

to balance model complexity with data size, preventing issues of over- or under-fitting. By addressing these 

factors through robust modeling and validation practices, reliable estimates are achievable.2 

Under the assumption that income data is independently and identically distributed, distribution parameters 

are estimated by maximizing the likelihood function: 

𝐿(𝜃) =  ∏ 𝑓(𝑦𝑖;  𝜃),

𝑁

𝑖=1

 

where 𝑦𝑖  represents the 𝑁 income observations. For distributions with more than one parameter, numerical 

optimization via the Nelder–Mead algorithm is applied to maximize the log-likelihood function. Classical 

distributions are predefined and do not require initial values, except for the custom defined New Pareto 

distribution. Standard errors are derived from the Hessian matrix at the optimal solution, and bootstrap 

techniques can reduce uncertainty in parameter estimates. 

Although full microdata ideally offers detailed parameter estimates, aggregated data (such as mean, Gini 

index, and Lorenz curve points) can sometimes be more efficient, robust to quality issues, and suitable for 

specific analyses, especially with simple distribution models. Additionally, aggregated data can reduce 

computational demands and clarify relationships by smoothing out noise, making it useful when microdata 

is complex or error prone. For specific applications, like estimating the poverty headcount in our case, 

aggregated data may be sufficient, offering adequate insights without the need for full microdata. 

 

3.4 Poverty estimation  

Once the distribution parameters are estimated, poverty headcount and other metrics are derived using the 

Foster–Greer–Thorbecke (FGT) class of poverty measures, which approximates the poverty level through 

the probability density function 𝑓(𝑦) : 

𝑃𝜑 = ∫ [
𝑧 − 𝑦

𝑧
]

𝜑

𝑓(𝑦)
𝑧

0

 𝑑𝑦. (9) 

 

Where 𝜑 is a positive integer in 𝜑 ∈ {0,1,2}, each corresponding to a specific poverty measure: poverty 

headcount, poverty gap, and squared poverty gap respectively. In this study, we focus on estimating the 

poverty headcount under several poverty lines, denoted as denoted as 𝑃0
𝑧.  

 
2 In R, the fitdistr function from the MASS package is used to estimate parameters using multiple estimation 

techniques, including MLE, moment matching (MME), and quantile matching (QME). 



This estimation can be approached by solving the integral of the PDF in equation (9). Alternatively, the 

headcount 𝑃0
𝑧 can be derived more directly using the cumulative density function (CDF) as we are dealing 

with normal distributions. Table 3 and Annex I provide detailed equations for the PDF, CDF, and quantile 

functions for each parametric model. 

Observed poverty headcount, which is taken as the anchor for comparison, is computed simply by counting 

income or consumption values below a specified threshold. 

Table 3 – Poverty estimation for all functional form (2,3, and 4 parameters) 

Model Parametric Functional Form Notes 

Lognormal 

𝐹(𝑧; 𝜇, 𝜎) =  Φ (
log (

𝑧
𝑣)

𝜎
+

𝜎

2
) 

Φ(. )is the standard normal 

cumulative density function 

Fisk 
𝐹 (𝑧; 𝛼, 𝛽) = (1 − (1 + (

𝑧

𝛽
)

𝛼

)
−1

) 
 

New Pareto 
𝐹 (𝑧; 𝛼, 𝛽) = (1 −

2𝛽𝑎

𝑧𝛼 + 𝛽𝑎
) 

 

Singh–Maddala 
𝐹(𝑧; 𝜑) = 1 − (1 + (

𝑧

𝑏
)

𝑎

)
−𝑞

 

 

𝜑 is the is the set of 

distribution-specific 

parameters (𝑎, 𝑏, 𝑞) 

Dagum 
𝐹(𝑧; 𝜑) = (1 + (

𝑧

𝑏
)

−𝑎

)
−𝑝

 
𝜑 is the is the set of 

distribution-specific 

parameters (𝑎, 𝑏, 𝑝) 

Beta2 

𝐹(𝑧; 𝜑) = 𝐵 (

𝑧
𝑏

1 +
𝑧
𝑏

; 𝑝, 𝑞) 

 

𝐵(𝑣; 𝑝, 𝑞)

= ∫
𝑦𝑝−1(1 − 𝑦)𝑞−1

𝐵(𝑝, 𝑞)

𝑣

0

 

Denotes the incomplete beta 

function ratio  

𝐹(𝑧; 𝜑) = 𝐵 (
(

𝑧
𝑏

)
𝑎

1 + (
𝑧
𝑏

)
𝑎 ; 𝑝, 𝑞) 

 

  



4. Results and Discussion 

 

4.1 Data regime 1: Basic distributional statistics 

In assessing the accuracy of different functional models for predicting poverty levels, we compare the 

predicted and observed poverty headcount across various country–year datasets. Figure 1 below depicts the 

headcount difference across various poverty lines for 2-parameter distributions (𝑃0
𝑧̂ − 𝑃0

𝑧) using limited 

grouped data (data regime 1).3 

In evaluating poverty estimates, the lognormal distribution consistently yields the most accurate results. 

However, in cases where data aligns closely with both lognormal and Fisk distributions, the latter typically 

provides a more precise poverty estimate (as observed in non-outlier cases with data regime 3).  

Overall, poverty estimates derived from grouped data exhibit more stability and consistency compared to 

those derived from microdata (to be seen later), especially for the lognormal and Fisk distributions. This 

improvement is evident in the absence of outliers in the boxplots for the Fisk distribution in grouped data 

and the concentration around “zero difference” as shown in Figures 1. The New Pareto distribution, 

however, does not show this same stability. 

Figure 1 - Comparison of poverty headcount estimates derived from observed data versus those obtained through imputation 

(data regime 1), across different two-parameter functional forms and various poverty lines 

 𝑧

𝜇
= 20% 

𝑧

𝜇
= 50% 

𝑧

𝜇
= 80% 

D
if

fe
re

n
ce

 i
n

 P
o
v

er
ty

 H
ea

d
co

u
n
t 

R
at

e 
(%

) 

   

 

While aggregate statistics, such as the mean and Gini coefficient, may be limited in scope, they nonetheless 

provide a wealth of information and effectively represent income and consumption data in its entirety. 

Simple parametric forms, including lognormal and Fisk distributions, succeed in capturing the data’s core 

characteristics when parameters are estimated using grouped data. Additionally, aggregate data helps 

mitigate noise that frequently affects microdata, leading to more reliable estimates. This empirical 

robustness is validated through a broad and diverse dataset. 

 

 

 
3 Detailed results are available in Tables 3 and 4 in Annex II, which reveals how limitations in data availability 

influence the accuracy of poverty estimates across different functional forms. 



4.2 Data regime 2: Added Lorenz coordinates 

Empirical analysis shows that using only a limited set of income distribution statistics – notably the mean 

and Gini index – can produce poverty estimates closely aligned with observed values. However, the 

inclusion of additional information, such as income and population shares (e.g., deciles or quintiles) via 

Lorenz coordinates (data regime 2), enhances parameter estimation and accuracy. With this richer dataset, 

three- and four-parameter models become feasible, yielding more precise poverty estimates. 

Figure 2 illustrates these improvements but for the Fisk distribution which seems to be worsened by the 

additional information (poverty underestimation). Poverty headcount differences show reduced variability 

across poverty lines, indicating a more reliable estimation. Shorter whiskers and larger belly at level zero 

suggest narrower error margins and more accurate estimations. 

Figure 2 - Comparison of poverty headcount estimates derived from observed data versus those obtained through 

imputation (data regime 2) across various poverty lines 
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4.3 Data regime 3: Microdata 

Income microdata for multiple countries employ parametric functions with 2, 3, and 4 parameters. 

Literature indicates that models with more parameters can better capture income distribution patterns due 

to greater flexibility. However, this added complexity can lead to overfitting and the marginal gain may not 

be worth it. Therefore, evaluating whether additional parameters lead to meaningful improvements is 

essential.  

Figure 3 compares the headcount difference across various distributions and poverty lines. Detailed results 

are available in Tables 3 and 4 in Annex II, which reveals how limitations in data availability influence the 

accuracy of poverty estimates across different functional forms. 

GB2 model is clearly effective in capturing income distribution intricacies across different poverty 

thresholds. The GB2 model’s four-parameter structure offers substantial flexibility, enabling it to more 

accurately model complex income distributions than simpler models. On the opposite side, the three-

parameter Singh–Maddala exhibits some extreme outliers in cases where fit is inappropriate. 

For lower income thresholds (where the poverty line is set at 20% of the mean income), the lognormal 

distribution generally provides a robust fit, with only a few outliers. This alignment at lower thresholds 

arises because the lognormal distribution places most data points near its central region, governed by the 

location parameter. However, as the threshold increases (moving from 
𝑧

𝜇
= 20% to 50% and 80%), the fit 

weakens in the distribution’s tail, where the lognormal model is less precise and other models become more 

accurate. 

Conversely, the Fisk distribution generally provides a stronger fit across most country–year observations 

for higher ratio, yet it displays notable outliers for low ratios. In fact, even slight inaccuracies in parameter 

estimation (specifically the shape parameter 𝛼) influences the cumulative distribution's tail behavior and 

subsequently alters the poverty headcount substantially. Figure 4 highlights that outliers arise when the 

estimated parameter 𝛼̂ significantly diverges from the observed 𝛼0 (i.e., 
𝛼0

𝛼̂
> 1), leading to a marked 

increase in the headcount difference. This inconsistency is often due to the empirical income distribution 

in certain country–years not conforming closely to the Fisk model.  

The New Pareto distribution performs reasonably well but does not achieve the same level of accuracy as 

the lognormal and Fisk distributions. While effective in many cases, this model shows notable discrepancies 

in poverty estimates for some country–year datasets, suggesting it is more sensitive to variations in data 

structure or underlying distribution characteristics. 

Despite its simplicity, the two-parameter lognormal model outperforms the more flexible Singh–Maddala 

model at lower poverty thresholds. However, as thresholds rise and extend into the distribution’s tail, the 

lognormal model’s fit diminishes. In contrast, the Fisk and New Pareto models exhibit improved 

performance at higher poverty lines, although the Singh–Maddala model’s performance at these levels 

remains inconsistent due to outliers that hinder its accuracy. Similar issues persist for the Fisk and New 

Pareto models, underscoring the challenges in modeling income distributions when only limited 

distributional statistics are provided. 



Figure 3 - Comparison of poverty headcount estimates derived from observed data versus those obtained through imputation 

(data regime 3) across different functional forms and various poverty lines 
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Figure 4 – Ratio of observed over estimated Fisk distribution parameter 𝜶 

 

 

 

 



4.4 Final assessment 

To assess the sensitivity of parameter estimates across different functional forms and data availability 

levels, poverty headcount differences were categorized into five ranges, from 0.5 percentage points to 

approximately 5 percentage points. For each country–year observation, data availability regime, and 

functional form, the delta headcount was assigned a category corresponding to one of these ranges. These 

results are presented systematically in Table 4.  

 

Table 4 - Poverty headcount difference (%) across data regimes and parametric functional forms 

          Data regime I Regime II             Regime III 

 
 

4.5 Within-regime comparison 

• Data regime I: both the Lognormal and Fisk distributions demonstrate a similar level of accuracy 

in estimating poverty headcounts, whereas the New Pareto distribution falls short of this standard, 

showing larger discrepancies in alignment with observed values. 

 

• Data regime II: except for the Dagum distribution, all three- and four-parameter functional forms 

generally perform well. Notably, the Beta2 and GB2 distributions achieve strong accuracy, with 

approximately two-thirds of all poverty estimates differing by less than one percentage point from 

the observed values, highlighting their robustness when additional grouped data (such as Lorenz 

coordinates) is available. 

 

• Data regime III: The three- and four-parameter distributions in data regime III also yield accurate 

poverty estimates, with over 50% of headcount estimates deviating by less than one percentage 

point from observed values. For two-parameter models, poverty estimates are still acceptable 

except for the New Pareto where most of the estimates deviate between one to five percentage 

points.  

 

• As supported in the literature, and given an arbitrary estimation criterion within a specified data 

regime (Regime I, II, or III), a distribution higher on a branch will generally perform better 

according to the same criterion. Table 1 empirically supports this pattern, demonstrating that the 



GB2 distribution (a higher-branch distribution) consistently outperforms the Singh–Maddala (SM), 

which in turn performs better than the Fisk distribution. 

 

4.6 Between-regimes comparison 

• Distributions in higher branches generally perform better because they offer greater flexibility and 

can more effectively capture tail behavior and income inequality than distributions with a limited 

number of parameters. However, this increased complexity—due to the greater number of 

parameters—can make estimation more challenging and require more extensive data. Importantly, 

our results indicate that greater data availability does not necessarily lead to better estimation, even 

when using the same functional form from a higher branch. Therefore, the method of estimation 

and its sensitivity to data availability become crucial factors. For example, the GB2 estimation 

results under grouped data or microdata illustrate this point. Although microdata have significantly 

more data available, the complexity of the model and the estimation method have led to less 

accurate outcomes compared to the estimation method used when only grouped data are provided. 

Issues such as overparameterization and the misfitting of certain parameters may contribute to this 

discrepancy. In essence, this is primarily due to the estimation of parameters for the various 

functional forms based on data usage and the parameter estimation methodology. 

 

4.7 Comparison across data regimes 

• Surprisingly, the lognormal distribution performs best when the least amount of data are available, 

where only aggregate statistics like the mean and Gini index are used. This finding suggests that 

even with minimal data, the lognormal distribution effectively captures income distributions for 

poverty estimation, possibly due to its simplicity and fewer parameters, which reduce the risk of 

overfitting. 

 

• Working with grouped data using specific estimation techniques (such as EWMD or OMD 

estimators) can yield results that are both accurate and stable. This implies that grouped data, 

despite its relative simplicity, provides a wealth of information, while the applied methods maintain 

robustness in parameter estimation. These methods effectively balance the limitations of data 

volume with parameter estimation accuracy, resulting in reliable poverty measures across varied 

distributions. 

 

• Distributions with more parameters, such as the GB2, generally perform better across data regimes 

as they provide increased flexibility, particularly in capturing tail behavior and income inequality. 

However, this added complexity often requires extensive data for reliable estimation, making 

estimation more sensitive to issues like overfitting or parameter instability. 

 

• Our findings indicate that more data does not always enhance estimation accuracy. For instance, 

the GB2 distribution, when estimated on grouped data, yielded more accurate results than on 

microdata despite the latter’s larger data volume. This discrepancy likely arises from challenges 

associated with overparameterization in the presence of noisy or sparse data, underscoring the 

importance of carefully matching estimation methods to data availability and distributional 

complexity. 



 

4.8 Goodness of fit comparison 

Data regimes 1 and 2 

Our analysis is based on the key assumption that a more accurate approximation of the Lorenz curve will 

yield more reliable poverty estimates. This premise holds true for the applications derived from data 

regimes I and II, where the objective is to minimize prediction errors associated with the Lorenz curve. 

The traditional goodness-of-fit approach can be expressed mathematically as follows: 

𝑆𝑆𝑅 = ∑(𝐿(𝑝𝑡) − 𝐿(𝑝𝑡 )̂)
2

𝑁

𝑡=1

 𝑆𝐴𝐸 = ∑ |𝐿(𝑝𝑡) − 𝐿(𝑝𝑡 )̂|

𝑁

𝑡=1

 

𝐴𝐼𝐶 = 𝑒
2𝐾
𝑁 ∗

∑ (𝐿(𝑝𝑡) − 𝐿(𝑝𝑡 )̂)
2𝑁

𝑡=1

𝑁
 𝐵𝐼𝐶 = 𝑁

𝐾
𝑁 ∗

∑ (𝐿(𝑝𝑡) − 𝐿(𝑝𝑡 )̂)
2𝑁

𝑡=1

𝑁
 

𝑤𝑠𝑠𝑟 =
∑ (𝐿(𝑝𝑡) − 𝐿(𝑝𝑡 )̂)

2𝑁
𝑡=1 ∗ (1 − |𝑝𝑡 − 𝑃0̂|)

2

∑ (1 − |𝑝𝑡 − 𝑃0̂|)
2𝑁

𝑖=1

 

 

Where 𝐿(𝑝𝑡)  denotes the observed cumulative income share at the cumulative at the cumulative share of 

people 𝑝𝑡, 𝐿(𝑝𝑡 )̂ represents the estimated cumulative income share, and 𝑁 is the total number of data 

points available.  

If one wants to concentrate the analysis on the poor subgroup of the population, we can employ the 𝑤𝑠𝑠𝑟 

proposed measure. The weights decrease as the distance from the estimated headcount index 𝑃0̂ increases, 

thereby allowing for a more nuanced evaluation of fit for low-income populations. 

Furthermore, to facilitate the comparison of non-nested models while penalizing for the inclusion of 

additional parameters, we utilize AIC and BIC. These criteria allow us to assess model performance while 

accounting for model complexity, helping us identify the functional form that best balances fit and 

parsimony.  

Table 5 presents the average of the different g-o-f measures, with lowest values (lighter color) signal 

better fit. Note that values have been multiplied by thousands for ease of comparison for numbers. In 

summary, similar conclusions regardless of the specific measure can be drawn: the superiority of the GB2 

distribution in accurately modeling the empirical income distribution and improving poverty estimation. 

This is followed by favoring higher branch distributions. Concerning data regime 1, the lognormal 

distributions shows another time its successful fit for income data. 

 

 



Table 5 - Goodness-of-fit, mean values (in thousands) 

Data 

regime I 

 

Data 

regime 

II 

Note: The tabulated results for WSSR measure are estimated using the ratio of Poverty line to mean equal to 0.5. As measured by 

50% of the mean   

Figure 5 - Goodness-of-fit boxplot 
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Data regime 3 

In this section, we assess the goodness-of-fit statistics for estimation on microdata. Our analysis focuses 

on quantifying the alignment between the fitted parametric distributions and the empirical distribution of 

income. To accomplish this, we utilize two classical goodness-of-fit tests: the Cramér–von Mises test and 

the Kolmogorov–Smirnov test. These tests are widely recognized in the literature for evaluating how 

closely the fitted distributions match the observed data. 

In addition to these traditional tests, we acknowledge the complexity inherent in our modeling framework, 

which incorporates more than two-parameter functions. To account for this complexity, we incorporate 

classical penalized criteria based on the log-likelihood, specifically the AIC and BIC. The results 

demonstrate that the GB2 consistently outperforms its competitors. 

In general, the KS and CVM tests are more informative when comparing the different distributional 

models. As expected, the GB2 exhibits the lowest values in all tests signaling its superiority over other 

models. The Singh–Maddala competes with the Lognormal although differences in number of parameters. 

The New Pareto seems to have a weak fit (AIC and BIC measures were omitted). The Fisk distribution 

seems to be struggling by being extremist: sometimes it hits the fit while sometimes it goes too far. 

Figure 6 - Goodness-of-fit measures on microdata 
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5. Policy Implications 

This study has contributed novel insights regarding the effect of data constraints on parametric 

estimation of poverty statistics. We have presented poverty estimates across income surveys 

worldwide, under various common data-availability regimes and various modeling specifications 

advanced in prior studies. The analysis has notably included the conflict-affected and high-

income countries in the MENA region. 

By examining global evidence and comparing outcomes across varying regimes of data 

availability, the study sheds light on some sources of discrepancies in poverty estimates, namely 

those linked to the constraints on estimation approach as dictated by limited data availability. 

Understanding the relative performance of various estimation methods, in various data 

availability regimes, can inform practitioners and policymakers about the pitfalls of relying on 

any of the three evaluated data-availability options for poverty assessments, and understanding 

the extent to which limited data may affect or even bias the analysis – compared to having access 

to complete 100% microdata. Understanding the relationship between the poverty estimates 

derived in alternative ways under alternative data settings can also enhance general confidence in 

the reliability of poverty measures, which is a challenge in many parts of the world not least in 

the MENA region. 
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