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Abstract

This study investigates two key strategies for coping with drought in Tunisia: agri-
cultural adaptation and migration, using panel data on net migration rates, agricultural
production, and weather conditions at a detailed administrative level. Our results in-
dicate that farmers expand irrigated land to cope with droughts. However, since this
is not sufficient, migration becomes a prominent alternative strategy. Indeed, less fa-
vorable weather is associated with higher out-migration, particularly among males,
less educated individuals, and informal or agricultural workers. Migration, however, is
predominantly accessible to wealthier households due to its associated costs. Further-
more, we provide also strong evidence of climate-induced international migration, but
primarily to neighboring countries.
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1 Introduction
Climate change and drought in particular is threatening the livelihoods of billions of people
worldwide and particularly those living from agriculture in climate change hotspots. There
is a range of complementary and substitutable strategies for coping with climate shocks
(Cattaneo et al.; 2019). Our objective in this paper is to contribute to the understanding
of how households adapt to drought by examining simultaneously two key coping strategies:
the modification of agricultural practices and migration.

To cope with climate risks, rural households can rely on formal insurance and credit
mechanisms, provided that markets are sufficiently developed and accessible, which is often
not the case in developing countries (Barnett and Mahul; 2007), and that the shocks they
face are not prolonged. Alternatively, they can rely on informal mechanisms that can be
categorized into two types of strategies: ex ante to reduce their magnitude, and ex post to
protect their livelihoods. Among the ex-ante strategies aimed at mitigating the effects of
climate shocks, farm households can adapt their agricultural practices. This could involve
specializing in production techniques that are less dependent on rainfall, increasing the
cultivation of irrigated crops, or favoring drought-resistant varieties (Bryan et al.; 2009).
This is precisely the first focus of our paper: examining crop adaptation strategies in response
to short-term climate variations in Tunisia.

Despite the potential of the aforementioned adaptations to mitigate the impact of climate
shocks, households may be compelled to adopt alternative coping strategies, such as using
their savings, liquidating assets, borrowing, or altering their household composition. They
may also turn to migration, which can serve both as an ex-ante strategy to diversify income
sources and protect against future risks, and as an ex-post strategy to compensate for losses
already incurred. Migration, as an informal coping mechanism, will be the second focus of
this article.

Characterized by a range of climates, spanning from a humid Mediterranean climate in
the North to an arid Saharan climate in the South,1 Tunisia has experienced several droughts
in recent decades, including a particularly severe drought in the late 90’s, between 1999 and
2002 and a more recent one since 2020. The majority of climatic projections2 indicate that
these climate events are expected to become more frequent in the future. By 2050, rainfall in
Tunisia is expected to decrease significantly, by between 10% and 35%, and temperatures are
expected to increase by between 1.9% and 2.9%. These climatic changes are highly likely to
result in a drop in agricultural production, particularly in rain fed cereal production and olive
production (Mougou; 2011). As the country is part of the water stress zone, with less than
500 m3 of water per inhabitant available annually and irrigation systems still underdeveloped
(less than 7% of agricultural land according to Mansour (2014)), food security and the living
conditions of rural populations dependent on farming activities can be easily threatened by
present and future climatic hazards.

1Precipitation levels vary from 1400 mm/year in the North to less than 40 mm/year in the South (Feki.H et
Cudennec.C; 2022).

2The median scenarios (Belghrissi.H; 2018; Ben Rached.S et al.; 2015) and the A2 greenhouse effect
scenario(Paeth; 2009)
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Both internal and international migration are common practices in Tunisia, and will be
examined. Since the 1960s, internal migration has been characterized by a major rural exo-
dus from the North-West and Centre-West towards the metropolis of Tunis and the Eastern
coastal Centre (Gsir and Bounouh; 2017). More recently, short-term internal migration has
mainly involved young rural women seeking seasonal work in urban areas (Zuccotti et al.;
2018). These internal displacements are mainly economic in nature and have been triggered
by droughts. Although agriculture currently employs only 15% of the workforce, the coun-
try’s climate, ranging from a Saharan environment in the south to a milder Mediterranean
climate in the north, suggests differentiated climate shocks in the future and is likely to drive
increased internal migration.

While the existing literature suggests that internal migration is more sensitive to cli-
matic hazards, the decision to migrate abroad can also be affected. As Defrance et al. (2023)
reminds us, the decision to migrate across borders is primarily influenced by two factors:
resources and the migration network. Long-distance migration is expensive, and building a
support network is crucial for migrants’ integration before they can achieve financial indepen-
dence. These two preconditions help to explain why environmental stressors such as drought
do not necessarily lead to long-distance international migration, but rather to short-distance
mobility. Indeed, the scarcity of resources during droughts decreases the ability of indi-
viduals to invest in long-distance migration. This phenomenon of liquidity constraint, also
highlighted in Cattaneo and Peri (2016), would explain why poverty exerts a constraint on
international migration. In the case of Tunisia, international migration, mainly to European
countries and, to a lesser extent, other Arabic countries, is not an uncommon phenomenon
and is mainly motivated by economic reasons and wage differentials (Fargues.P; 2005). Con-
sequently, if droughts in Tunisia exacerbate this wage differential, they are likely to increase
the number of international migrants, provided that household budget constraints are not
too tight.

In this paper, we analyze two key strategies for coping with drought: on-farm adaptation
and migration. On-farm adaptation is analyzed using a fractional multinomial logit model,
where farmers choose between high-input rain-fed, low-input rain-fed, irrigated crops, and
subsistence crops based on weather conditions. This approach enables the decomposition
of climate’s impact on production into two components: crop structure and within-crop
productivity. Internal migration is modeled using a pseudo-gravity model that incorporates
both climate push and pull factors. In contrast, our focus is on the effects of climate on the
delegation3 of origin when estimating international migration patterns.

Our analysis utilizes panel data on agricultural production, net migration rates and
weather conditions at a detailed administrative level, covering all 265 delegations in Tunisia.
The agricultural data span the period from 1999 to 2013, while migration data, drawn
from the 2014 national census, cover the period from 2009 to 2014. We combine these
datasets with temperature and precipitation data, also at the same administrative level, for
the corresponding periods.

We show that, despite the expansion of irrigation, this coping strategy is insufficient to
3A Tunisian administrative unit equivalent to a district
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mitigate the adverse effects of unfavorable weather conditions. As a result, households turn
to migration as an alternative strategy. Our findings on internal migration are consistent
with recent literature: increased droughts lead to higher rates of out-migration, particularly
among males, less educated individuals, informal workers, and those dependent on agricul-
ture. However, this strategy is primarily accessible to wealthier households, as migration
incurs significant costs. Finally, we find strong evidence of climate-induced international
migration, predominantly to neighboring countries.

The remainder of the paper is structured as follows. The next section reviews the relevant
literature. The data and methodology are described in Sections 3 and 4. Section 5 presents
our results. Finally, Section 6 concludes.
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2 Literature review
As highlighted by Berlemann and Steinhardts’ survey (2017) and Hoffmann et al.s’ meta-
analysis (2020), the majority of studies on climate and migration agree that adverse climate
events significantly increase internal migration in low and middle income countries. For
instance, using two waves of survey data from 200 households in four villages in northern
Nigeria (1988 and 2008), Dillon et al. (2011) predict the effect of ex ante and ex post agri-
cultural income risks, measured by temperature, on migration. They find a strong male
migratory response to ex ante idiosyncratic risk and ex post covariate risk. Marchiori et al.
(2012) provide a theoretical model combined with empirical data on rural-urban and in-
ternational migration patterns in Sub-Saharan Africa from 1960 to 2000. They estimate
a 5-million-person displacement due to weather anomalies. Mastrorillo et al. (2016) use
a gravity model applied to census and climate data from South Africa (1997-2011) and
find that positive temperature extremes and rainfall anomalies increase outmigration at the
inter-district level. Dallmann and Millock (2017) construct bilateral migration flows from the
Indian census and use the Standardized Precipitation Index (SPI) to measure rainfall deficits
and surpluses. Their findings align with the literature: rainfall variation drives internal mi-
gration, with deficits increasing migration and surpluses having varying effects depending on
the region. Using urbanization as a proxy for rural-urban migration, Henderson et al. (2017)
find that drier conditions in rural, agriculture-dependent regions increase urbanization in
Sub-Saharan Africa, as migration serves as an escape from negative agricultural shocks. Us-
ing a multi-country panel dataset of African countries, Di Falco et al. (2024) highlight the
cumulative impact of prolonged drought on migration.

Using weather variables as instruments to estimate the effect of climate-driven agricul-
tural yield changes on migration from Mexico to the U.S., Feng et al. (2010) find that declines
in crop yields due to climate change significantly increase emigration from Mexico. Vari-
ous papers using cross-country data and gravity models reach the same conclusion. Beine
and Parsons (2015) show that natural disasters do not have a significant direct effect on in-
ternational migration, but long-term climatic factors (e.g., temperature increases) indirectly
affect migration by widening wage differentials between origin and destination countries. Cai
et al. (2016) suggest that temperature increases (but not precipitation changes) significantly
drive international migration in agriculture-dependent countries. Coniglio and Pesce (2015)
suggest that climatic events in origin countries significantly increase migration to OECD
countries, especially from regions with large agricultural sectors.

However, as mentioned above, the effect of weather anomalies varies greatly depending
on the initial economic conditions of the household (Berlemann and Steinhardt 2017; Hoff-
mann et al. 2020). On one hand, negative climate shocks can increase migration as a coping
strategy. On the other hand, these shocks might reduce the capacity of poorer households
to migrate. Gray (2009) and Gray and Mueller (2012) use household surveys and discrete
regression models to examine the effect of environmental changes on international and inter-
nal migration in Ethiopia and the Southern Ecuadorian Andes. Climate shocks often trigger
internal migration, but effects vary significantly across countries. In the case of Ecuador,
low rainfall reduces both internal and international migration due to financial constraints.
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Kubik and Maurel (2016) study household survey data from Tanzania and find that negative
weather shocks increase migration only for households with enough income to cover migra-
tion costs. Poorer households are less able to migrate, indicating that economic constraints
play a crucial role. Peri and Sasahara (2019) use global fine-grain migration data to track
rural-urban migration patterns in relation to temperature changes over the 1970-2000 period.
They find evidence that rising temperatures reduce outmigration from rural areas in poor
countries but increase rural-to-urban migration in middle-income countries. Rich countries
show no significant migration response to temperature changes, likely due to advanced agri-
cultural technologies. A recent paper by Defrance et al. (2023), using census data from Mali,
suggests that the effect of droughts on the net migration rate, while positive, varies across
localities and depends on household adaptation capabilities.

Studies on international migration suggest similar findings. Cattaneo and Peri (2016)
extend the Roy-Borjas migration model and apply migration data from 115 countries (1960-
2000) to predict migration in response to warming trends. They show that increasing tem-
peratures reduce urbanization and international migration in poor countries due to liquidity
constraints, but increase migration in middle-income countries, where agricultural income is
still significant and migration is financially feasible. Falco et al. (2019), using a 2SLS ap-
proach to assess how climate shocks drive international migration, find that climate-related
declines in agricultural productivity increase emigration, particularly from poor countries.
The effects are weaker in middle-income countries, where agricultural sectors are less domi-
nant but still significant.
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3 Data

3.1 Measuring migration through the 2014 Tunisian population
censuses

The migration analysis is based on the 2014 Tunisian exhaustive census, which collects basic
dwelling and household characteristics. To measure internal migration, we use the actual
delegation of residence of all individuals declaring to be living in another dwelling five years
previously. By comparing the actual place of residence with the former place of residence and
the year in which the individual moved, we are able to construct, for the period 2009-2014,
the annual bilateral flows between the 264 delegations, which total 69,432 bilateral flows.
Furthermore, the Tunisian census reports the typology of previous and current locations,
which allows us to distinguish between rural and urban localities. This enables us to capture
all movements from one administrative delegation to another, as well as all movements
between rural and urban localities, including those within the same delegation. Although
the geographical level of our analysis is relatively fine-grained in relation to the size of the
country, it is important to note that this measure of internal migration does not allow us
to capture movements within the same delegation, between two localities with the same
typology. This may result in an underestimation of our migration variable and introduce a
downward bias in our estimation.

Bilateral flows have an average of 0.09%, with a range of 0 to 20%. The variable exhibits
a high degree of dispersion, with a standard deviation that is five times greater than the
average. When expressed in terms of the number of migrants, this corresponds to an average
of 4.2 migrants per flow, with values ranging from 0 to 3082 migrants.

For international migration, we follow the Defrance et al. (2023)’s approach and employ
the emigration module to quantify this phenomenon. This entails requesting the head or
other reference member of a household to enumerate the household members who have
departed the country to reside abroad over the past five years. Based on the year of departure
and the country of destination, we construct annual international flows for each delegation
of origin.

The rate of international migration per delegation, defined in relation to the initial size
of the delegation of origin, is approximately 0.03% on average. This is lower than the figures
for internal migration. Expressed in numbers of migrants, this corresponds to an average
of 6 international migrants per year, ranging from 0 to 467 migrants, when we consider all
destination countries together.

Whether for internal or international migration, it is possible to construct migration
sub-flows by cross-referencing the characteristics of individuals or delegations. For example,
it might be of interest to compare the responses of men and women to climate hazards.
To do this, we construct annual flows of bilateral delegations by counting men and women
separately, which results in two data matrices that we will use in turn for heterogeneity
analyses. When examining this dimension of heterogeneity, we no longer distinguish between
rural and urban localities in order to avoid too many delegation flows with zero migration
flows.
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3.2 Measuring climate events

3.2.1 Standardised Precipitation-Evapotranspiration Index (SPEI)

This paper deploys the Standardised Precipitation-Evapotranspiration Index (SPEI) pro-
posed by Vicente-Serrano et al. (2010) to measure drought episodes between 2009 and 2014.
The SPEI inherits the calculation algorithm from its predecessor, the Standardised Precip-
itation Index (SPI). The SPI is a multi-scalar drought index that captures the deviation
of observed precipitation from the climatological average over a given period. Therefore,
this index allows for comparison over time and space. The main criticism of the SPI is its
disregard for other variables that might influence water demand, especially temperature.
Vicente-Serrano et al. (2010) addresses this criticism by incorporating temperature and po-
tential evapotranspiration into the SPEI.

In this study, we use the Global SPEI base, version 2.9, provided by the Spanish National
Research Council (CSIC)4. The dataset contains SPEI data on a global scale, with a spatial
resolution of 0.5x0.5 degrees and a monthly temporal resolution, covering the period from
January 1901 to December 2022. As suggested by the literature, we utilize a 12-month SPEI
time scale. Our primary explanatory variable is the annual average of the SPEI. We also use
the seasonal average of the SPEI, focusing solely on the agricultural season from October
to May. In addition, to capture a dry year (season), we create a dummy variable which
takes the value 1 if the annual (seasonal) average SPEI falls below -1. Figure 1 presents
substantial within-country variation in SPEI during the period 2009-2014. The majority of
drought episodes during this time occurred in the southern delegations.

3.2.2 Standardised Precipitation Index (SPI)

Despite its advancements, the index has a limitation in our context. The SPEI is computed
at the 50-square-kilometer-cell level, whereas on the left-hand side, the bilateral flows are
constructed at a much finer granularity (delegation level). As a result, using the SPEI
diminishes the statistical power of the regression. For robustness check, we use the SPI
computed at the 5-square-kilometer-cell level. The precipitation data are drawn from the
European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5). ERA5
provides hourly estimates of climate variable at the 0.05x0.05-degree level over the period
from January 1940 to present. The precipitation data are standardised over the 1940-2014
period using the R package SPEI provided by Beguería et al. (2010)5.

3.3 Spatial Production Allocation Model (SPAM)

To examine the most intuitive adaptation strategy - agricultural production, we collect
aggregate data from the Spatial Production Allocation Model (SPAM) database. SPAM
estimates agricultural production using crop production statistics, satellite-based cropland
data, irrigated land, rural population density, etc. It provides data on harvested land,

4Source: https://spei.csic.es/database.html
5Source: https://github.com/sbegueria/SPEI
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Figure 1: Average SPEI over 2009-2014

physical area, and production in metric tons and monetary value at a fine-grained level
(0.1x0.1 degrees). The data covers four crop techniques: irrigated, rainfed high input, rainfed
low input, subsistence, and various crop types such as wheat, barley, mill, oil crops. Three
waves are available for Tunisia: 1999-2001, 2010 and 2011-2013. Since only the first and
third waves span three years, the second wave is excluded from our calculations to maintain
consistency in interpretation. Figures 2a and 2b plot the average SPEI and total crop
production over comparable periods and delegations. It is visually shown that the weather
was much drier in 1999-2001 compared to 2011-2013, corresponding to lower agricultural
yields during the former period, except in some southern delegations.
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(a) Average SPEI

(b) Agricultural production (SPAM data)
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4 Empirical specification

4.1 The agricultural-climate nexus

To test the agricultural-climate nexus, we use the following specification:

Yj,t = β0 + β1SPEIj,t + δj + δt + ϵj,t (1)

Where Yj,t is the agricultural outcome by delegation j at time t. The outcomes include log
of production (mt), log of harvested land (ha) and productivity (USD/ha). We control by
district and year fixed effects. To examine the impact of SPEI on the choice of crops, i.e.
crop share, we estimate equation (1) using the fractional multinomial logit model, provided
by Buis (2008). We can distinguish the effect according to the type of crop: high-input
rain-fed, low-input rain-fed, irrigated crops, and subsistence crops.

The impact of SPEI on agricultural production can be decomposed into two channels: the
effect on crop structure (between-crop component) and the effect on the productivity of each
technology (within-crop productivity component). The expected agricultural production
can be expressed as the weighted sum of the production values of each technology: E(P ) =
Pc × Sc, where Pc and Sc represent the production value and production share of each
technology, respectively. Thus, the total effect of SPEI on agricultural production can be
decomposed as follows:

∂E(P )

∂SPEI
=

4∑
c=1

∂Pc

∂SPEI
× Ŝc +

4∑
c=1

∂Sc

∂SPEI
× P̂c (2)

where ∂Pc

∂SPEI
and ∂Sc

∂SPEI
are the effect of SPEI on agricultural production and allocation

partioned by cultural technologies. Ŝc and P̂c are predicted share and production of each
technology. The decomposition analysis is conducted for agricultural production and pro-
ductivity.
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4.2 Migration-climate nexus

4.2.1 Theoretical considerations and empirical specification

In response to climatic shocks, one adaptation strategy individuals may adopt is migration.
We estimate a pseudo-gravity model inspired by the random utility model widely used in
the migration literature (Dallmann and Millock; 2017; Beine and Parsons; 2017; Mastrorillo
et al.; 2016). This theoretical framework assumes that homogeneous agents decide to stay in
their residence locality or to migrate to another locality depending on their utility function
which they try to maximize. To do so, they consider the relative incomes they would receive
in the two scenarios and compare them with the induced costs of migration. The reference
econometric specification is:

mijt = β0 + β1climit + β2climit ∗Rurali + β3climjt + β4climjt ∗Ruralj + δij + δt + ϵiit (3)

Where mijt is the bilateral migration rate from delegation i to delegation j between year t−1
and t, computed from the ratio between the number of migrants Mijt in this time interval
and the initial population size in the delegation of origin, Popiit−1. To test the heterogeneity
of climate effects, we construct sub-flows according to individual migrant characteristics,
such as gender, activity, reason for migration, etc.

Our variables of interest are climit and climjt. The literature often focuses on climit,
assuming that climate acts as a push factor and influences migration decisions by reducing
opportunities in the delegation of origin (Dallmann and Millock; 2017; Beine and Parsons;
2017; Mastrorillo et al.; 2016). We follow their approach by considering the climate in
the departure delegation climit, but also consider the climate in the destination delegation
climjt to test whether climate also acts as a pull factor. Indeed, in the case of bilateral
migration, decisions also depend on the comparison of opportunities across all other destina-
tions(Anderson; 2011).This requires that agents are well-informed about climate conditions
in destinations outside their delegation of origin.

Since we are interested in the total effect of climate change on migration decisions, we
follow Dell et al. (2009) and Beine and Parsons (2017)’s approach and include no control in
our estimation. As Berlemann and Steinhardt (2017) point out, the controls to include in the
estimations are open to debate and depend on the objectives of the researchers. To answer
this question, it is important to remind that climate variability is likely to affect internal and
international migration decisions through multiple mechanisms. For example, by affecting
infrastructure, significant climate events can affect wages and employment. Another natural
channel we can think of is the agricultural channel. Indeed, intense droughts are likely to
affect crop yields and reduce agricultural income (Cai et al.; 2016). Hsiang et al. (2011)
show that climate can also trigger violent conflict and induce migration and refugee flows.
Thus, if we are interested in the total effect of climate, including such controls may introduce
estimation bias, as these variables are likely to be affected by climate conditions and absorb a
part of the effect. Instead, to avoid bad controls (Angrist and Pischke; 2009) and to capture
the total effect of climate on migration, we exclude all potential effects of climate variation
and estimate a parsimonious model by including only fixed effects and measures of climate
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change in our estimation.
The use of bilateral data allows us to account for specific migration patterns, disaggregate

migration flows by characteristics, and test for heterogeneous effects. For example, we expect
climate to affect household welfare, especially in rural areas, by affecting their agricultural
productivity (Feng et al, 2010). However, as Marchiori et al. (2012) show in their theoretical
model, by reducing opportunities in rural areas, negative climate variability may increase
rural-urban migration, exerting downward pressure on urban wages and creating incentives
to move abroad. This suggests that climate variability is likely to impact migration from
rural areas more strongly than from urban areas. To test this discrepancy between rural and
urban areas, we exploit the delegation typology available for both the origin and destination
delegation in the Tunisian census. We thus test the heterogeneity of the effect by interacting
our climate variable with a variable indicating whether the locality is rural or urban, rurali
and ruralj.

We include time-invariant origin-destination fixed effects, δij, to control for the specific
migration trend of each bilateral corridor. It allows us to explain specific trends between two
delegations due to their invariant-time characteristics, such as the distance between these two
delegations, whether they share a common border, their cultural and historical proximity.
We also add a time trend fixed effect, δt to control for the average evolution of migration
over time. In other words, we are interested in the total effect of climatic variations, holding
all characteristics of bilateral flows fixed over time and controlling for temporal trends.

If we measure weather conditions by a continuous variable of precipitation (SPI) or
evapotranspiration (SPEI), we expect an increase in climit to improve agricultural conditions
and to reduce the number of departures, especially in rural areas where we expect the effect to
be stronger. On the other hand, we expect that an increase in precipitation in the destination
area, climjt, to attract more migrants and have a positive effect on inflows, provided the
weather conditions are well known. To test the non-linearity of this relationship, we may
also consider climate shocks such as drought, instead of continuous variables.

As the literature on the topic underlines (Berlemann and Steinhardt; 2017), the effects of
climate on migration decisions vary with the type of migration, and the conclusions are not
the same whether internal or international migration is considered. To provide an overall
picture of the effects of climate on migration decisions, we complete the analysis by estimating
the following equation:

IMRit = β0 + β1climit + β2climit ∗Rurali + δi + δt + ϵit (4)

Where IMRit is the international migration rate at delegation level j, at time t. We focus on
the effects of climate in the delegation of origin, climit, according to the delegation typology,
Rurali, and control for delegation fixed effects, δi, and a time trend fixed effect, δt. IMRit

is calculated by enumerating all international departures, regardless of destination. In order
to highlight heterogeneous effects, we also distinguish the effects of climate for the main
destination countries, namely France, Italy and Libya.

The combination of these two approaches allows us to compare the sensitivity of migration
decision to climate depending on the destination localities. In both equations, we exclusively
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focus on short-term migration decisions in response to prevailing climate conditions.

4.2.2 Econometric concerns

The underlying question is whether the reduced-form, presented in equations 3 and 4 capture
the causal effect of climate variability on internal and international migrations.

First, the variables climit and climjt are constructed from external weather data to
minimize potential biases in estimation. Furthermore, bilateral flow fixed effects in equation
3 and delegation fixed effects in equation 4, are incorporated to mitigate the risk of omitted
variables influencing the estimated coefficients related to climate factors. This addition
is crucial due to constraints in data availability, which hinder the inclusion of variables
potentially linked to both climate and migration. Additionally, period fixed effects are
included to account for the historical and structural emigration patterns of certain areas,
regardless of their climate relevance. Since we are interested in the causal effect of climate
on migration, we decide not to include controls that are also likely to be directly affected by
climate to avoid bad control bias.

The variables of interest, bilateral migration between two delegations and emigration,
are both expressed as rates between 0 and 1. Assuming there are n delegations, we therefore
count n*(n-1) internal flows and n international flows. Due to the construction of these flows,
a significant number are zero: about half for internal flows and 15% for international flows.

In order to correctly estimate equations 3, whose dependent variables are non-linear with
a high incidence of zero values, we follow the suggestions of Silva and Tenreyro (2006) and
Dallmann and Millock (2017)’s approach, and estimate the equations using a Poisson pseudo-
maximum likelihood (PPML) estimator. For the equation 4, whose dependent value has a
much smaller share of zero values, we follow Defrance et al. (2023)’s approach and estimate
with a two-way fixed-effects model, and provide robustness tests with a PPML model.

To control for potential variations in the attractiveness of origin and destination areas for
other reasons than climate, we add time-varying destination characteristics and time-varying
origin characteristics in a robustness model. The limitation is that including these large sets
of fixed effects may capture some of the climate effect. Given the sensitivity of Poisson
models to a large number of fixed effects, this model is estimated with an OLS model.

In the reduced-form equations 3 and 4, our focus is on capturing the total effect of climate
variability on migration decisions, without delving into the specific mechanisms driving these
effects.
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5 Results

5.1 The agricultural-climate nexus

Table 1 reports the estimated effects of weather on agricultural output, productivity and
harvested land. Panel A shows that more favorable weather leads to better output for rain-
fed crops while reducing the total output of crops that needs irrigation. Further investigation
into productivity and land gives more insight on the underlying mechanism. Better weather
increases productivity of all crops and harvested land of rain-fed crops (Panel B and C),
hence, increase the total output of rain-fed crops. Conversely, worsen weather conditions
force farmers to increase the share of irrigated land as an adaptation strategy (Panel D). If
this strategy had totally compensated the effect of bad weather, we should not have found
the total output of all crops sensitive to weather conditions. In other words, the coefficient
in Panel A, column 1 should have not been significant.

Table 1: Effects of the SPEI on agricultural production (1999-2013)

All crops Irrigated High-input Low-input Subsistence
Panel A: Production, log (mt)
SPEI 0.951∗∗ -5.350∗∗∗ 4.457∗∗∗ 3.409∗∗∗ 2.347∗∗∗

(0.384) (0.603) (0.611) (0.842) (0.463)
Constant 9.502∗∗∗ -2.697∗∗∗ 14.08∗∗∗ 11.93∗∗∗ 9.519∗∗∗

(0.636) (1.018) (1.004) (1.401) (0.758)
Observations 522 451 491 490 466
Panel B: Productivity (US/ha)
SPEI 90.34 2456.0∗∗∗ 1350.3∗∗∗ 1012.3∗∗∗ 352.9∗∗

(276.3) (519.4) (279.1) (210.1) (144.5)
Constant 697.1 4805.8∗∗∗ 2866.7∗∗∗ 2220.0∗∗∗ 976.4∗∗∗

(461.9) (868.1) (470.2) (336.5) (241.3)
Observations 522 451 491 490 466
Panel C: Harvested land, log (ha)
SPEI 1.284∗∗∗ -6.939∗∗∗ 3.159∗∗∗ 2.110∗∗ 1.883∗∗∗

(0.373) (0.725) (0.657) (0.881) (0.492)
Constant 9.927∗∗∗ -6.739∗∗∗ 11.92∗∗∗ 10.02∗∗∗ 9.147∗∗∗

(0.621) (1.227) (1.084) (1.469) (0.809)
Observations 522 451 491 490 466
Panel D: Land share
SPEI -0.223∗∗∗ 0.127∗ 0.00824 0.0877∗∗

(0.0398) (0.0672) (0.0439) (0.0428)
Observations 522 522 522 522
Note: Clustered standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

15



Decomposition analyses are consistent with the above regressions. More favorable cli-
mate conditions improve within-crop productivity. When the weather becomes less favorable,
farmers shift toward irrigated crops as an adaptation strategy. However, the between-crop
component is much smaller than the within-crop component, suggesting that this adaptation
strategy does not sufficiently compensate for the loss caused by unfavorable climate condi-
tions. Therefore, households might have to adopt other strategies, including migration, to
shield themselves from the impact of climate change.

Table 2: Between and within effects of the SPEI (1999-2013)

Production, log (mt) Productivity (USD/ha)
Between -0.171∗∗∗ -357.1∗∗∗

(0.0508) (53.79)
Within 2.156∗∗∗ 1245.9∗∗∗

(0.344) (101.5)
Total 1.984∗∗∗ 888.9∗∗∗

(0.394) (142.5)
Observations 528 528
Note: Boostrapped standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.2 Internal climate migration

Table 3 presents the estimates of Equation 3. Column 1 and 2 estimate the effect of climate
on the standardized log of the migration rate +1 using the OLS estimation. Column 3
estimates the effect of climate on migration flows, computed as a percentage of the initial
size of the delegation of origin, using the PPML estimation. The results are consistent
with our expectation: better climate conditions in the delegation of origin slow migration to
other delegations, and better climate conditions in rural locations in destination delegations
increase their attractiveness. The push factor works in both type of localities, and is not
significantly stronger in rural localities. The pull factor works only in rural localities.

Table 3: Effect of the SPEI on migration

Migration flows

OLS OLS PPML

SPEI in origin -0.015*** -0.005 -0.199***
(0.004) (0.006) (0.051)

SPEI in origin×Rural -0.020*** -0.019*** -0.011
(0.004) (0.004) (0.021)

SPEI in destination -0.009* -0.002 -0.013
(0.005) (0.006) (0.054)

SPEI in destination×Rural 0.012*** 0.009*** 0.043*
(0.003) (0.003) (0.025)

Observations 216,820 216,820 214,275
Number of flows 43,364 43,364 43,364
Flow F.E yes yes yes
Year F.E yes yes yes
Destination*Year F.E no yes no
Origin*Year F.E no yes no

Sample: Census from 2014. Note: Robust standard errors in parentheses .
***,**,* mean respectively that the coefficient is significantly different from
0 at the level of 1%, 5% and 10%.

We then divide the migration flows into four categories based on the origin and desti-
nation localities: rural-rural, urban-urban, rural-urban, and urban-rural. The estimates are
reported in Table 4. Less favorable climate conditions only exacerbate flows toward urban
areas (exacerbate the rural exodus and increase flows between two urban localities). We do
not observe any significant impact of climate in the delegation of destination.

In Tables 5-10, we distinguish the flows according to migrant characteristics, including
gender, educational level, age groups, wealth level, employment status, and type of work.
Men are more sensitive to climate conditions than women. Older cohorts seem less sensitive
than younger ones. We unexpectedly find an effect of climate on the destination for some
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Table 4: Effect of the SPEI on migration flows by type of destination and origin districts

Rural to Rural Rural to Urban Urban to Rural Urban to Urban

SPEI in origin -0.125 -0.254** -0.064 -0.155***
(0.158) (0.107) (0.141) (0.051)

SPEI in destination 0.143 -0.017 -0.192 -0.090
(0.156) (0.111) (0.127) (0.056)

Observations 24,440 41,190 37,320 111,325
Number of flows 4,888 7,992 7,268 22,265
Flow F.E yes yes yes yes
Year FE yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean respectively that
the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.

age groups and women. We also find that migrants are likely to be less educated, suggesting
that their jobs are more climate-independent. This finding is aligned with the estimates
in Table 8: internal migration is more sensitive to climate conditions, as individuals often
have precarious positions in the labor market, i.e. engaging in informal work, and depend
mainly on agricultural activities. However, given the costs of migration, individuals from
wealthy household are more likely to migrate. To our surprise, seasonal workers seem to be
less sensitive to climate conditions (Table 9). There are no difference between own account
workers and wage workers (Table 10).

Table 5: Effect of the SPEI on internal migration flows

By gender By education level
Men Women Low Middle High

SPEI in origin -0.210*** -0.150*** -0.246*** -0.212*** -0.143***
(0.042) (0.038) (0.058) (0.051) (0.049)

SPEI in destination -0.066 -0.104*** -0.101* 0.020 -0.079
(0.043) (0.039) (0.059) (0.052) (0.051)

Observations 111,765 121,985 81,260 88,125 91,330
Number of flow 22,353 24,397 16,252 17,625 18,266
Flow F.E yes yes yes yes yes
Year F.E yes yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean
respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.

When we separate internal migration flows by motives, we once again find that economic
motivation are the main channel through which climate affects migration (Table 11). Indeed,
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Table 6: Effect of the SPEI on internal migration flows by age categories

20-29 30-39 40-49 50-59 60-69

SPEI in origin -0.141*** -0.075 -0.187*** -0.046 0.058
(0.045) (0.047) (0.070) (0.096) (0.166)

SPEI in destination -0.081* -0.208*** 0.004 0.032 -0.397**
(0.046) (0.047) (0.070) (0.097) (0.159)

Observations 99,045 102,070 66,150 44,200 23,055
Number of flow 19,809 20,414 13,230 8,840 4,611
Flow F.E yes yes yes yes yes
Year F.E yes yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean
respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and
10%.

Table 7: Effect of the SPEI on internal migration flows depending on current level of wealth

Below the median Above the median

SPEI in origin -0.170*** -0.197***
(0.065) (0.041)

SPEI in destination -0.063 -0.073*
(0.061) (0.043)

Observations 85,335 108,435
Number of flow 17,067 21,687
Flow F.E yes yes
Year F.E yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses
. ***,**,* mean respectively that the coefficient is significantly different
from 0 at the level of 1%, 5% and 10%.

droughts exacerbate economic migration, but also seem to increase marital migration. In
other words, droughts are likely to affect marital decisions. Interestingly, climate conditions
in the destination delegation do not seem to have a robust effect in general but increases
migration return. This is probably because return migrants have a better understanding of
the evolving climate conditions.
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Table 8: Effect of the SPEI on internal migration flows

Informal Formal Primary activity Primary activity
work work Outside agriculture in agriculture

SPEI in origin -0.236*** -0.114*** -0.203*** -0.644***
(0.046) (0.042) (0.039) (0.202)

SPEI in destination 0.006 -0.132*** -0.052 0.241
(0.046) (0.044) (0.040) (0.201)

Observations 109,715 105,420 116,810 19,815
Number of flow 21,943 21,084 23,362 3,963
Flow F.E yes yes yes yes
Year F.E yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean respectively
that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.

Table 9: Effect of the SPEI on internal migration flows by type of work

Permanent Temporary Seasonal

SPEI in origin -0.226** -0.222* -0.154
(0.096) (0.130) (0.108)

SPEI in destination 0.043 -0.060 -0.048
(0.100) (0.120) (0.121)

Observations 39,110 36,795 36,795
Number of flow 7,822 7,359 7,359
Flow F.E yes yes yes
Year F.E yes yes yes

Sample: Census from 2014. Note: Robust standard errors in paren-
theses . ***,**,* mean respectively that the coefficient is significantly
different from 0 at the level of 1%, 5% and 10%.

Table 10: Effect of the SPEI on internal migration flows by status of workers

Own account Wage workers Family workers and others
SPEI in origin -0.247*** -0.223*** -0.186

(0.086) (0.042) (0.173)
SPEI in destination -0.076 -0.040 0.047

(0.078) (0.044) (0.174)

Observations 55,300 109,620 14,985
Number of flows 11,060 21,924 2,997
Flow F.E yes yes yes
Year F.E yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean
respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.
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Table 11: Effect of the SPEI on internal migration flows depending on the reason

Economic Marital Return Studies Family

SPEI in origin -0.221*** -0.177*** -0.171 0.119 -0.101
(0.048) (0.052) (0.200) (0.099) (0.081)

SPEI in destination -0.062 -0.137** 0.475** -0.073 -0.011
(0.051) (0.055) (0.197) (0.100) (0.081)

Observations 100,295 84,750 16,345 37,735 65,300
Number of flows 20,059 16,950 3,269 7,547 13,060
Flow F.E yes yes yes yes yes
Year F.E yes yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,*
mean respectively that the coefficient is significantly different from 0 at the level of 1%,
5% and 10%.
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5.3 Drought induced international migration

Table 12 reports the estimates of Equation 4. Column 1 includes all destination countries.
Columns 2-4 present separate regressions for the main destinations (Libya, Italy, and France).
On average, there is no robust effect of climate conditions on international migration flows.
When we look at migration by destination country, we find that better climate conditions in
rural localities significantly slow migration to Libya. The results are robust to the climate
index used. International migration to OECD countries, where migration costs may be
higher, does not seem to be significantly affected by climate conditions. Therefore, we
provide the analysis of heterogeneity by taking into account only the international migration
to Libya.

Table 12: Effect of climate on international migration flows by destination based on several
climate index

All Lybia Italy France

SPEI 0.397*** -0.067 0.046 0.409***
(0.125) (0.097) (0.147) (0.127)

SPEI*Rural 0.032 -0.143*** 0.036 0.065*
(0.038) (0.052) (0.051) (0.037)

Seasonal SPEI 0.043 -0.083 0.024 0.020
(0.091) (0.118) (0.193) (0.087)

Seasonal SPEI*Rural 0.041 -0.142*** -0.032 0.101
(0.055) (0.046) (0.036) (0.062)

Annual SPEI Drought 0.027 0.082 0.017 0.049
(0.103) (0.082) (0.096) (0.112)

Annual SPEI Drought*rural -0.002 0.198*** -0.072 -0.022
(0.052) (0.072) (0.078) (0.054)

Annual SPI 0.004 0.071 -0.007 -0.003
(0.038) (0.051) (0.059) (0.034)

Annual SPI*rural 0.011 -0.183* -0.033 0.061
(0.048) (0.098) (0.050) (0.046)

Observations 2,568 2,568 2,568 2,568
Number of flows 428 428 428 428
Flow F.E yes yes yes yes
Year F.E yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,*
mean respectively that the coefficient is significantly different from 0 at the level of 1%,
5% and 10%.

The estimates of the climatic effect on migration to Libya by individuals’ characteristics
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are provided in Table 13. International migration is more climate-sensitive for men, whereas
there is very little difference between age and education groups.

Table 13: Effect of the SPEI on international migration flows by individuals’ characteristics

By gender By age groups By education level
Men Women Below 40 Above 40 Low High

SPEI 0.014 -0.078 -0.120 -0.031 -0.053 -0.106
(0.131) (0.114) (0.165) (0.092) (0.147) (0.088)

SPEI *rural -0.164* -0.139** -0.147* -0.142*** -0.133** -0.113*
(0.085) (0.058) (0.080) (0.051) (0.059) (0.065)

Observations 1,920 1,920 1,920 1,920 1,920 1,920
Number of flows 320 320 320 320 320 320
Flow F.E yes yes yes yes yes yes
Year F.E yes yes yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean respec-
tively that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.

Further investigation into the motivations behind migration reveals that economic reasons
are the primary channel through which climate conditions influence international migration.
(Table 14).

Table 14: Effect of the SPEI on international migration flows by destination

Economic Marital Return Studies Family

SPEI -0.057 0.088 -0.089 -0.138 0.209
(0.110) (0.141) (0.090) (0.211) (0.140)

SPEI*rural -0.153*** -0.126 -0.022 -0.023 -0.057
(0.052) (0.097) (0.022) (0.114) (0.110)

Observations 1,920 1,920 1,920 1,920 1,920
Number of flows 320 320 320 320 320
Flow F.E yes yes yes yes yes
Year F.E yes yes yes yes yes

Sample: Census from 2014. Note: Robust standard errors in parentheses .
***,**,* mean respectively that the coefficient is significantly different from 0
at the level of 1%, 5% and 10%.

23



6 Conclusions
In this paper we analyze household adaptation strategies in response to changing climate
conditions, focusing on two main strategies: agricultural production adaptation and migra-
tion. We conduct a geographically disaggregated analysis to assess how drought episodes
influenced agricultural production from 1999 to 2013, as well as the scale and patterns of
migration flows within and out of Tunisia from 2009 to 2014.

We demonstrate that worsening weather conditions force farmers to increase the share
of irrigated land. However, this strategy does not completely offset the effects of adverse
weather. Consequently, households must adopt other strategies, including migration, to
protect themselves from the impact of climate change.

The results show that deteriorating climate conditions (lower precipitation levels) in
origin delegations increase migration flows, while better climate conditions in rural locations
in destination delegations, increase their attractiveness. A typical internal migrant is likely to
be a man, less educated, engaged in informal work, dependent on agriculture, and originating
from a wealthier family. Our finding also confirms that economic motivation is the main
driver of climate migration.

We also highlight an effect of climate conditions on international migration. Less fa-
vorable weather causes higher migration flows to neighboring countries, mainly to Libya.
However, it is unclear whether migration to OECD countries is affected by climate condi-
tions.

This study underscores the critical need for policies aimed at enhancing resilience and
bolstering adaptive capacity in rural areas. This involves improving water storage and man-
agement systems, promoting sustainable land management practices, and fortifying social
safety nets to safeguard vulnerable populations during climate-related crises. Addition-
ally, understanding the gender and educational disparities among migrants and how climate
shocks impacts the local labor market structure underscores the importance of targeted
policies to improve educational access and skills training, particularly for vulnerable groups.
Additionally, the study provides valuable insights for policymakers to anticipate demographic
pressures on urban areas, helping to inform proactive urban planning and development strate-
gies.
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7.1 Data

7.2 Robustness checks
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Figure 3: Evolution of SPEI and SPI overtime

Figure 4: Mean NDVI across delegations
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Figure 5: Share of the area NDVI≤ 0.2 across delegations
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Table 15: Summary statistics of the SPAM data

N Production Harvested area Productivity Land share
All crops 522 8.59 8.1 2.156 1
By techniques
Irrigated 451 7.302 5.417 7.839 0.164
High-input rainfed 491 6.654 6.599 1.201 0.363
Low-input rainfed 490 6.877 6.817 1.767 0.283
Subsistence 466 6.125 6.236 1.024 0.19
By main crops
Cereals 505 6.918 6.53 1.538 0.348
Oil crops 497 6.546 6.946 0.75 0.448
Others 518 6.997 5.382 6.441 0.205

Table 16: First stage estimates: Effect of climate variations on the vegetation index

NDV It−1 NDV It

SPEIt−1 0.293***
(0.057)

SPIt−1 0.159***
(0.031)

SPEIt 0.060
(0.045)

SPIt 0.276***
(0.030)

Observations 930 930 930 930
Flow F.E yes yes yes yes
Year F.E yes yes yes yes

Note: Robust standard errors in parentheses . ***,**,* mean re-
spectively that the coefficient is significantly different from 0 at the
level of 1%, 5% and 10%.
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Table 17: Robustness check: Effects of droughts on agricultural production (2000-2012)

All Irrigated Rainfed high Rainfed low Subsistence
Number of intense droughts over the last 3 years
Droughts -0.283∗∗∗ 1.140∗∗∗ -1.308∗∗∗ 0.0119 0.298∗∗∗

(0.0646) (0.118) (0.131) (0.181) (0.101)
Constant 7.714∗∗∗ 2.316∗∗∗ 10.00∗∗∗ 5.795∗∗∗ 4.171∗∗∗

(0.194) (0.368) (0.393) (0.537) (0.294)
Observations 2136 938 1843 1821 1768
R2 0.335 0.809 0.163 0.0711 0.0137
Number of months with intense drought over the last 3 years
Droughts -0.0265∗∗ 0.186∗∗∗ -0.194∗∗∗ 0.0334 -0.0209

(0.0106) (0.0191) (0.0171) (0.0275) (0.0156)
Constant 7.767∗∗∗ -0.474 12.66∗∗∗ 4.714∗∗∗ 5.736∗∗∗

(0.363) (0.656) (0.587) (0.939) (0.521)
Observations 2136 938 1843 1821 1768
R2 0.323 0.809 0.156 0.0743 0.00594
Number of intense seasonal droughts over the last 3 years
Droughts -0.100∗∗ 0.780∗∗∗ -0.726∗∗∗ -0.436∗∗∗ -0.515∗∗∗

(0.0428) (0.0764) (0.0859) (0.0949) (0.0636)
Constant 7.192∗∗∗ 3.393∗∗∗ 8.388∗∗∗ 7.180∗∗∗ 6.637∗∗∗

(0.142) (0.254) (0.297) (0.316) (0.212)
Observations 2136 938 1843 1821 1768
R2 0.320 0.793 0.0883 0.103 0.0924
5-arcminute cell F.E Yes Yes Yes Yes Yes
Year F.E Yes Yes Yes Yes Yes
Note: Robust standard errors in parentheses . ***,**,* mean respectively that the coefficient is
significantly different from 0 at the level of 1%, 5% and 10%.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 18: Robustness checks: Effect of climate on migration based on several climate indexes

Migration flows

Seasonal SPEI in origin -0.015*** -0.003
(0.004) (0.005)

Seasonal SPEI in origin×Rural -0.005** -0.004*
(0.002) (0.002)

Seasonal SPEI in destination -0.014*** -0.014***
(0.004) (0.005)

Seasonal SPEI in destination×Rural 0.005*** 0.002

SPI in origin 0.005*** 0.000
(0.002) (0.002)

SPI in origin×Rural -0.010*** -0.010***
(0.003) (0.003)

SPI in destination -0.001 -0.001
(0.002) (0.003)

SPI in destination×Rural 0.013*** 0.012***
(0.002) (0.002)

Observations 214,610 214,610
Number of flows 42,922 42,922
Flow F.E yes yes
Destination*Year F.E no yes
Origin*Year F.E no yes

Sample: Census from 2014. Note: Robust standard errors in parentheses
. ***,**,* mean respectively that the coefficient is significantly different
from 0 at the level of 1%, 5% and 10%.
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Table 19: Robustness checks: Effect of climate on migration using alternative measures of
droughts

Migration flows

Number of droughts over the last 3 years
Origin 0.004** 0.001

(0.002) (0.002)
Origin×Rural 0.010*** 0.007***

(0.002) (0.003)
Destination 0.006*** -0.000

(0.002) (0.003)
Destination×Rural -0.013*** -0.009***

(0.002) (0.002)

Number of months with drought over the last 3 years

Origin 0.001*** -0.000
(0.000) (0.000)

Origin×Rural 0.001*** 0.001***
(0.000) (0.000)

Destination 0.001*** 0.000
(0.000) (0.000)

Destination×Rural -0.001*** -0.001***
(0.000) (0.000)

Number of seasonal droughts over the last 3 years

Origin 0.003** -0.001
(0.001) (0.003)

Origin×Rural 0.003* 0.001
(0.002) (0.002)

Destination 0.008*** 0.000
(0.002) (0.003)

Destination×Rural -0.008*** -0.003**
(0.001) (0.002)

Number of droughts over the last 5 years

Origin 0.002 -0.003
(0.001) (0.003)

Origin×Rural 0.003* 0.001
(0.002) (0.002)

Destination 0.008*** 0.001
(0.002) (0.003)

Destination×Rural -0.008*** -0.004**
(0.001) (0.002)

Observations 214,610 214,610
Number of flows 42,922 42,922
Flow F.E yes yes
Destination*Year F.E no yes
Origin*Year F.E no yes

Sample: Census from 2014. Note: Robust standard errors in parentheses . ***,**,* mean
respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.
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