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Abstract 

Children’s nutritional status is expected to be negatively impacted by global climate change given 

their relative vulnerability to food insecurity shocks. The developing countries in Africa are 

relatively even more vulnerable to these negative impacts. This study investigates the impact of 

climate change on the geographical variation of the prevalence of stunting among children under 

the age of five in the Nile basin region using the Demographic and Health Surveys of the three 

countries Egypt, Ethiopia and Uganda. Survey data is spatially and temporally merged with high 

resolution climate change datasets to investigate whether and how the change in temperatures and 

precipitation has an influence on children’s malnutrition. The prevalence of stunting among 

children under five years of age and its socioeconomic determinants are modelled using Bayesian 

geospatial regression model. The prevalence and determinants of stunting varied across Egypt, 

Ethiopia, and Uganda. The result of this paper highlights the fact that social policies and public 

health interventions targeted to reduce the burden of childhood stunting should consider 

geographical heterogeneity and adaptable risk factors. 

 
JEL Classification: I1, I3, Q3 
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 ملخص

 

.  الأمن انع ام صلللللللللل ما  أمام النسلللللللللل     لضللللللللللعف   نظرا  العالم   المناخ بتغي   سلللللللللل  ا  الأطفال تغذية تتأثر  أن المتوقع من  
 ال ول وتع   الغذائ 

   النامية
 
   ال راسلللة هذه ت حث السللل .ية.  الآثار  ل ذه نسللل يا  عرضلللة أكي   أفريقيا  ف

 
   الت اين على المناخ تغي   تأثي   ف

 
 بي    التقزم لانتشلللار  الجغراف

   الخامسللة سللن دون الأطفال
 
   والصللحية ال يموغرافية المسلل   باسللتخ ام النيل حوض منطقة ف

 
:  دول ثلاثة ف ل  ه   وأوغن ا.  وإثي بيا  مصل

   ل تغي   كللان  إذا  فيمللا  ل تحقيق اللل قللة عللاليللة المنللاخ تغي   بيللانللا  مجموعللا  مع وزمنيللا  مكللانيللا  المسلللللللللللللللل  بيللانللا  دمج يت 
 
 الحرارة درجللا  ف

 الخامسلللللللللللللللللة سللللللللللللللللن دون الأطفال بي    التقزم انتشللللللللللللللللار  نمذجة يت  ذلك.  على يؤثر  وكيف الأطفال تغذية سللللللللللللللللو  على تأثي   الأمطار  لوهطو 
   الانح ار  نموذج باسلللللللتخ ام والاقتصلللللللادية الاجتماعية ومح داته

 
.  الجغراف  

   ومح داته التقزم انتشلللللللار  وت اين المكائ 
 
لللللل  أنحا  جميع ف  مصل

   العامة الصلللحة وت خلا  الاجتماعية السلللياسلللا  أن حقيقة على الضلللو  الورقة هذه يجةنت وتسللل   وأوغن ا.  وإثي بيا 
 الح   تسلللت    ال  

   التقزم عب  من
 
   الطفولة مرح ة ف

   تأخذ  أن ين غ 
 
   التجانس ع م الاعت ار  ف

 
 .ل تكيف القاب ة الخطر  وعوامل الجغراف

  



2 

 

1. Introduction  

Most land areas will experience more frequent hot temperature days and heat waves by 2100 

according to the Intergovernmental Panel on Climate Change (IPCC, 2014).  These changes in the 

weather have direct and indirect implications on health and well-being. Climate change can have 

a direct impact on people’s health through changing exposure to heat and cold, air pollution, 

emerging infections, and respiratory and water-borne diseases (Li et al., 2015; Mayrhuber et al., 

2018; Greena et al., 2019). Children are even more vulnerable than adults to these changes; as they 

have greater metabolic rate, lower cardiac output, and greater body surface area-to-mass-ratio, 

which makes their bodies more sensitive to temperature changes (Bunyavanich et al., 2003; 

Sheffield et al., 2014; Varela et al., 2020). The indirect impacts of high temperature on human’s 

health have also been identified through the effects of climate change on agriculture, water sources 

and general productivity levels (Hasegawa et al., 2016). Such disturbances in nutritional sources 

and income levels can eventually threaten food security and hence increase the risk of children 

malnutrition (Mayrhuber, et al., 2018). 

 

There is now evidence from middle- and high-income countries (Deschênes et al., 2009; Gasparrini 

et al., 2015; Barreca, 2018) that high temperatures are associated with increased mortality and 

malnutrition rates among children. Yet, little is known about the impacts of high temperatures in 

developing countries, although the problem is becoming more salient in these countries. Poor 

populations are less capable of confronting exposure to heat waves and its health associated effects. 

This is mainly attributed to their weak hospitalization and medical assistance, weak nutritional 

status and their strong dependence on agriculture and natural resources which are subject to higher 

climate risks (Varela et al., 2020; Xu et al., 2017).  Therefore, quantifying the impacts of climate 

change on children’s health in the developing countries is vital to mitigate them efficiently. But 

the scarcity of data in most developing countries, is the main challenge limiting such studies.  This 

study examines the impact of climate change on children’s heath in Egypt, Ethiopia, and Uganda. 

The choice of the studied countries is not only driven by data availability, but these countries also 

offer a good diversity and representation in the exploration of the Nile Basin and the discrepancies 

across it.  

 

Malnutrition is one of the many health inequalities facing governments which can be exacerbated 

with climate change. It is, therefore, important to control for the impacts of the socio-economic 

disparities while investigating the impacts of climate change on malnutrition. The social gradients 

for health outcomes and the usage of health systems are revealed by disaggregating the under-five 

morbidity patterns across countries. This study aims at examining the association between 

temperature and precipitation anomalies and under-five child malnutrition in the Nile Basin 

countries namely, Egypt, Ethiopia, and Uganda, at a smaller spatial scale; and analyzing the spatial 

variations in climate change effects and under-five stunting across different areas of the studied 

countries while taking into consideration the socioeconomic factors of health such as education, 

urban-rural, and wealth disparities. This will help policy makers evaluate the impacts of changes 



3 

 

in climate on the prevalence of poor health conditions among infants and children across the Nile 

Basin and identify regions that are less resilient to high temperatures. This, in turn, can be used as 

an early warning system to guide social policies and the public health sector on where and how to 

distribute its resources to save young generations.  

 

In sum, this paper broadly contributes to a multitude of literature by applying it to a region that 

received little research attention. It adds to the body of knowledge on the role of socioeconomic 

factors in shaping child health, as well as possible routes and biological aspects that could explain 

their impacts. It further contributes to the climate change literature by elucidating the complex 

relationship between climate change and children’s nutritional status, which encompasses several 

direct and indirect pathways. The paper is organized as follows. Sections 2 presents the research 

problem and a review of the studies performed to examine the impacts of weather and climate 

change variables on children malnutrition at both the global and regional levels. This is followed 

by a description of the survey data used in the study in Section 3. Then, Section 4 briefly explains 

the Bayesian geo-spatial model used to evaluate malnutrition among under-five children in relation 

to climate at the sub-national level of Egypt, Ethiopia, and Uganda. Next, Section 5 report the 

study empirical results; and finally, Section 6 concludes and offers policy implications. 

 

2. Background and Literature Review 

Climate change and its impact on nutrition has been considered one of the most pressing global 

challenges. Continuous increase in surface temperature and more intense and frequent heatwaves 

and precipitation events are expected to have a global impact through reducing water availability, 

food security, infrastructure, and agricultural incomes. However, the impact on low and middle-

income countries is expected to be stronger due to the fact that these countries are more vulnerable 

to slower economic growth and food shortages which will make poverty reduction more difficult 

and may increase the risk of violent conflicts (Louis and Hess, 2008). Climate change results in a 

loss in aggregate crop production, but this impact is stronger in tropical and temperate regions that 

rely on rainfed agriculture to meet their food and nutrition needs (Brown et al., 2015; Challinor et 

al., 2014). Developing countries in Africa are one of the most vulnerable regions in which 

agricultural production are negatively highly affected by inconsistent rainfall and extremely high 

temperatures (Davenport et al., 2017). The frequent flooding and drought events in addition to 

extremely high temperatures make it more difficult for families that rely on subsistence agriculture 

to meet their nutritional and caloric demand. The fact that children in the developing world, and 

more specifically in poor communities, are more vulnerable to food and nutritional food insecurity 

provokes research into how climate change may impact the nutritional status of children living in 

these regions.  

 

Understanding the impact of climate change on children’s nutritional status is becoming more 

pressing due to the short-term and long-term negative impacts of malnutrition. Malnutrition before 

conception and during early pregnancy has adverse effects on maternal, neonatal, and child health 
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outcomes (Ramakrishnan et al., 2012). Malnutrition in-utero also increases the incidence of 

disability and lower years of schooling (Almond and Mazumder, 2001; Meng and Qian, 2009). 

Studies have also shown that malnutrition during early childhood has a negative impact on adult 

stature and years of schooling, adult health, and mortality rates (Alderman et al., 2006; Hoddinot 

and Kinsey, 2001; Currie and Vogl, 2013; Van den Berg et al., 2009). The rates of stunting in 

children in addition to higher risks of maternal and child malnutrition are relatively higher in low- 

and middle- income populations (Black et al., 2020). This makes focusing on the investigation of 

climate change impacts on children’s malnutrition in the developing countries of significance 

importance. 

 

The adverse impact on agricultural production does not only directly increase the risk of famines 

and malnourishment, but it also impacts nutrition indirectly by reducing the incomes of food 

producers and labor in the agricultural sector (Maccini and Yang, 2009). It also increases the prices 

of food, which in turn reduces access to food and increases the likelihood of child malnourishment. 

These extreme weather events also increase the spread of vector-borne diseases such as diarrhea 

and malaria among children which reduce their biological ability of food utilization, lower the 

capability of exclusive breast-feeding, and make parents less capable of working and taking care 

of their children, and hence adversely impact their nutritional status (Louis and Hess, 2008; 

Randell et al., 2021).  

 

Previous literature attempted to capture the relationship between exposure to climate changes in-

utero and as children under the age of five and their short-term and long-term health status 

measured by their height-for-age and weight-for-age. Some studies have examined the effects of 

climate variability during pregnancy on child health outcomes and found that pregnancies 

conceived in months with lowest precipitation have shorter gestation periods and increased risk of 

having pre-term babies (Rayco-Solon et al., 2005; Davenport et al., 2020). Grace et. al (2021) 

show that high temperatures and low levels of agricultural production in Mali are associated with 

lower birth weights and that living in malarias conditions may increase the likelihood of non-live 

birth outcomes. While McMahon and Gray (2021) find that precipitation extremes in South Asia 

in the first year of life reduces children’s height-for-age with the highest impact concentrated in 

under-resourced households, such as those lacking access to proper sanitation and households with 

women with lower education. Thiede and Strube (2020) examine the impact of temperature and 

precipitation anomalies on the weight and wasting of children below the age of five in Sub-Saharan 

Africa concluding that high temperatures are associated with lower weights and increased risk of 

wasting, whereas low precipitation is associated with reductions in weight. Hoddinott and Kinsey 

(2001) reach similar results by investigating the impact of rainfall shocks on children growth 

finding that children aged 12 to 24 months are the most vulnerable as they lose 1.5-2cm of growth 

in the aftermath of a drought. Whereas Grace et al. (2012) show that the drying and warming 

conditions in Kenya are associated with increasing stunting levels for children aged 1 to 5. Another 

study tests the relationship between temperature, precipitation and stunting in Ethiopia and 
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concludes that increasing rainfall during rainy seasons is associated with increasing height-for-

age, while exposure to higher temperature during the first and third trimester is positively 

associated with severe stunting (Randell et al., 2020). In brief, several studies have shown that 

lower precipitation and higher temperature are associated with increased stunting, wasting, and 

other adverse health outcomes.  

 

Conversely, Singh et al. (2001) examine the relationship between extreme rainfall and incidence 

of diarrhea in Fiji concluding that there is a positive association between both variables. In 

addition, Tiwari and Skoufias (2017) examine the relationship between monsoon rainfall shocks 

and height and weight in early childhood in rural Nepal. Their results indicate that more rainfall is 

associated with higher weight in children due to more agricultural production “positive income 

effect”, but it also results in lower weight due to higher transmission of disease “negative disease 

effect”. However, the positive income effects outweigh the negative disease effects resulting in 

positive net weight gain for children during the higher precipitation episodes. Cornwell and Inder 

(2015) also find that rainfall has a positive impact on height-for-age but also a negative impact 

through higher transmission of disease in urban children aged 10 and under in Indonesia.   

 

Previous literature indicates contradicting results when examining the relationship between 

climate change and children’s nutritional status. One possible justification for this contradiction is 

that relationship between precipitation and height and weight in children is non-linear. This is 

because too little rainfall negatively impacts child health by affecting agricultural incomes and 

food availability, but also too much rainfall results in more disease transmission which in turn 

increases child malnourishment. The relationship between climate and nutrition also tends to differ 

from one region to another. To our knowledge, there have not been any previous studies that 

explored or compared the relationship between climate change and stunting among infants and 

children across the Nile Basin countries.  Our study examines the geographical distribution of 

stunting and the non-linear relationship between temperature and precipitation anomalies and 

stunting among children aged from birth to 5 years old sub-nationally in Egypt, Ethiopia, and 

Uganda using spatial Bayesian regression modeling. This modelling approach enables us to control 

spatial confounders more rigorously by accounting for the within-country spatial variations.  To 

analyze the impact of climate change on height-for-age and stunting in children aged 5 and under 

in the three countries under study, we used the last available Demographic and Health Survey 

(DHS) datasets of Egypt, Ethiopia and Uganda for children aged 0-59 months with valid 

anthropometric measurements and geographic coordinates. DHS provides high quality nationally 

representative datasets with high resolution geographic identifiers; see details below.  

 

3. Data and Method 

3.1.  Data Description 

Child anthropometric and socio-economic data are obtained from the latest available Demographic 

and Health Surveys (DHS) in Egypt, Ethiopia and Uganda; which were accessed using the DHS 
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program database (https://dhsprogram.com/). DHS data are considered among the highest quality 

population health surveys in the developing countries. One advantage of DHS data is that they are 

collected using standardized core questionnaire that facilitates comparisons across countries 

(Headey, 2013). Another advantage of DHS data is that they include the latitude and longitude of 

DHS clusters which allows linking individual records to high-resolution temperature and 

precipitation data.  

 

It is worth noting here that the DHS program randomly displaces cluster geo-coordinates (0-2 km 

for urban clusters; and 0-5 km for rural clusters with 1-5% of all clusters shifted by 10 km) to 

protect respondent confidentiality. This can introduce bias in the estimates but proved to be of 

relatively small magnitude. To account for this location shift, climate data in and around the 

community cluster location are aggregated. That is, households are linked with climate data for an 

approximate 10 square kilometer grid cell, including where the DHS cluster lies and all grid cells 

congruent to the cluster grid cell (Grace et al., 2012). Linking the cluster grid cell to the climate 

information of the cluster itself and its neighboring grid cells accounts for the location shift and 

the fact that temperature and precipitation outside of a household’s immediate area may still 

influence that household’s ability to meet the nutritional requirements of its children. 

 

The analysis in this paper is restricted to the children under 5 for which anthropometric measures 

are available and to children born to mothers who had usually resided in their cluster of 

enumeration for at least 2 years and as a result have been exposed to the climatic conditions in 

these clusters. Twins and observations with biologically impossible height-for-age z-score (HAZ) 

values (>|5|) were excluded from the sample. After these restrictions, the analysis in this paper is 

based on a sample that includes 11995 child records from Egypt 2014 DHS, 8000 from Ethiopia 

2016 DHS and 3536 from Uganda 2016 DHS. As recommended by the DHS program, sampling 

weights are applied to all analyses. The sample characteristics are illustrated in Table 1 and the 

geographic distribution of the clusters included in the sample is depicted in Figure 2.  

 

Climate variability is measured using data from the University of East Anglia Climate Research 

Unit’s Time Series (CRU TS). CRU TS is a global dataset of monthly weather conditions (Harris 

et al., 2014) constructed at a grid of 0.5o × 0.5o resolution based on statistical interpolations of data 

from over 4000 weather stations across the globe. Maximum temperature and precipitation records 

are extracted from January 1951 through December 2015 (and December 2013 for Egypt) for grid 

cells that DHS clusters fall in, and maximum temperature and precipitation anomalies are 

calculated as described below.  

 

3.2.  Variables 

The dependent variable in this study is stunting, defined as having a height-for-age z-score (HAZ) 

less than -2. HAZ z-score is calculated by subtracting an age- and sex-appropriate median value 
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from a standard population and dividing by the standard deviation (SD) of the standard population. 

The z-scores are calculated using the World Health Organization (WHO) standards (World Health 

Organization, 2006). The nutritional status of children is then classified on a binary scale, “1 = 

Yes/stunted” if HAZ < -2 or “0 = No/not stunted” if HAZ >-2. Stunting is often associated with 

several negative outcomes, including suppressed immunity, increased risk of morbidity and 

mortality, and lower school performance. This, in turn, has implications on human development 

over both the short- and long-run terms. 

 

Table 1. Summary of Variables 
 Ethiopia Egypt Uganda 

Variables Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Average lifetime climate anomalies 

Temperature 1.803 0.006 1.21 3.27 1.993 0.006 0.65 3.38 1.795 0.006 1.04 2.35 

Precipitation 0.261 0.009 -1.18 1.84 -0.480 0.004 -1.38 1.00 0.548 0.007 -0.32 1.43 

Historical average climate 

Temperature 26.247 0.041 20.29 35.96 28 0.019 24.25 33.93 28.827 0.03 22.59 31.71 

Precipitation 91.705 0.346 15.57 149.63 4.099 0.048 0.20 23.96 107.34 0.228 56.56 139.76 

Child characteristics 

Age (months) 28.822 0.28 0 59 28.589 0.17 0 59 29.103 0.32 0 59 

%Females 0.490 - 0 1 0.473 - 0 1 0.496 - 0 1 

Birth order 4.018 0.04 1 14 2.457 0.01 1 15 4.041 0.05 1 18 

Mother characteristics 

%Primary 

education 

0.061 - 0 1 0.183 - 0 1 0.321 - 0 1 

%Secondary & 

higher 

education 

0.026 - 0 1 0.587 - 0 1 0.067 - 0 1 

BMI 20.576 0.04 11.73 46.43 28.896 0.05 10 49.96 23.135 0.09 14.16 48.63 

Age (years) 27.135 0.10 13.33 48.17 26.199 0.05 13.17 47.17 26.876 0.13 13.50 45.75 

%Working 0.446 - 0 1 0.133 - 0 1 0.841 - 0 1 

Household Characteristics 

%Urban 0.105 - 0 1 0.305 - 0 1 0.196 - 0 1 

%Middle 

income group 

0.213 -  0 1 0.255 - 0 1 0.202 - 0 1 

%Rich income 

group 

0.319 - 0 1 0.372 - 0 1 0.356 - 0 1 

%With 

protected 

water source 

0.524 - 0 1 0.974 - 0 1 0.693 - 0 1 

%With 

improved toilet 

facility  

0.082 - 0 1 0.916 - 0 1 0.330 - 0 1 

 

The main goal of this study is to investigate whether and how climate change impacts the rates of 

stunting in the Nile Basin countries: Egypt, Ethiopia and Uganda. Therefore, the independent 

variables of interest here are temperature and precipitation anomalies that capture the deviations 

of the climate patterns over each child’s lifetime from the long-term average conditions within 
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each cluster in the sample. These variables are calculated respectively as the yearly mean 

temperature and yearly total precipitation observed for a given cluster averaged over the age of 

each child prior to the year of each DHS survey. These averages are then standardized over all 

consecutive 12-month periods from 1950 to 2000 for that location. This approach is used to assess 

the irreversible impacts of climatic variability on the child's health and nutritional status throughout 

his life. 

 

Figure 2. Maps of the location of under five children in the investigative sample in Egypt (top 

left), Ethiopia (top right) and Uganda (bottom) 

 

 
 

 
 

Evidence has accumulated that socioeconomic factors including dwelling conditions, wealth, and 

education as root causes of a variety of health consequences. In this paper, the model take into 

consideration other independent variables, as control variables, which are the socioeconomic 
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determinants of child health including child gender, birth order and age in months; maternal age, 

Body Mass Index (BMI) and school attainment; the place of residence controlling for rural/urban 

disparities, wealth, toilet facility and water source status of the household’s cluster of residence; 

and the historical climate of the cluster of residence as measured by the respective means and 

standard deviations of temperature and precipitation across history (1950-2015). These variables 

may be correlated with child malnutrition (Behrman and Skoufias, 2004; Grace et al., 2012; Rieger 

and Trommlerova, 2016; Thiede and Strube, 2020), and hence their inclusion in the model 

increases the estimates precision. We further attempt to expand climate exposure in the model by 

including the enhanced vegetation index (EVI), as a proxy for the average productivity and yield 

of a cereal crop in each cluster, which is expected to positively contribute to child nutrition. In 

addition to the control variables described above, we included a series of random effects to control 

for the cluster effect, as well as spatially structured random effects. These latter random effects are 

incorporated into the model to account for the geographical dependence between clusters, 

assuming that spatial autocorrelation decays as the distance between clusters increases. 

 

3.3. Statistical Modelling 

To evaluate the effects of temperature and precipitation variability on children’s stunting status 

while accounting for the spatial dependence between DHS clusters within each of the three Nile 

Basin countries, a Bayesian spatial modelling approach is used. In this modelling approach, the 

stunting status of child 𝑖 is estimated as a function of temperature and precipitation anomalies in 

the cluster of residence 𝑐 throughout the life span of child 𝑖 until the year of the survey; while 

controlling for the child characteristics including the maternal and household corresponding 

characteristics and the historical climate in cluster 𝑐. That is, let 𝑌𝑖 be the binary variable taking 

value 1, if the i-th child is stunted and 0 if not. This variable can thus be assumed to be distributed 

as a Bernoulli random variable with unknown probability 𝜋𝑖 that the child is stunted, i.e. 

𝑌𝑖~𝐵𝑒𝑟𝑛(𝜋𝑖). Thus, the risk of being stunted can be modelled using a spatial logistic regression 

model that accounts for excess heterogeneity and spatial dependence between areas within the 

same country as follows: 

 

logit(𝜋𝑖) = log (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝑋𝑖

⊤𝛽 + 𝑋𝑐𝑖
⊤𝛼 + 𝑓𝑠(𝑐𝑖) + 𝑓𝑢(𝑐𝑖), 

 

where 𝛽  =  (𝛽1, … ,  𝛽𝑝)
⊤

 is the (𝑝 × 1) vector of regression coefficients that corresponds to the 

vector of child specific covariates and socioeconomics determinants of health 𝑋𝑖, 𝛼 =

(𝛼1, … , 𝛼𝑘)⊤ is the (𝑘 × 1) vector of regression coefficients that corresponds to the vector of 

cluster covariates 𝑋𝑐𝑖
 such as temperature and precipitation anomalies, 𝑓𝑢(𝑐𝑖) is a spatially 

unstructured random component which is independent and identically normally distributed with 



10 

 

zero mean and unknown precision4, τ𝑢, and  𝑓𝑠(𝑐𝑖) is a spatially structured component which is 

assumed to vary smoothly from one location to another. The smoothness of 𝑓𝑠(𝑐𝑖)  is accounted 

for by modelling it as an intrinsic Gaussian Markov random field with a stationary and isotropic 

Matérn covariance matrix with unknown precision, τ𝑠 and range ρ parameters. This Matérn 

covariance matrix is defined as follows: 

 

𝑐𝑜𝑣 (𝑓𝑠(𝑐𝑖), 𝑓𝑠(𝑐𝑗)) =
σ𝑠

2

2𝑣−1Γ(𝑣)
(κ|𝑐𝑖 − 𝑐𝑗|)

𝑣
𝐾𝑣(κ|𝑐𝑖 − 𝑐𝑗|), 

 

where |𝑐𝑖 − 𝑐𝑗| denotes the distance between locations 𝑐𝑖 and 𝑐𝑗, σ𝑠
2 = 1/τ𝑠 is the variance of the 

spatial field, and 𝐾(⋅) is the modified Bessel function of second kind and order 𝑣 >  0. The integer 

value of 𝑣 determines the mean square variability of the process. κ > 0 is a parameter related to 

the range 𝜌, the distance at which the correlation between two points is approximately zero and 

referred to as a spatial decay parameter. A similar modelling approach that accounts for the 

geographic dependence between DHS clusters was used to examine associations between stunting 

and other potential health, socio-economic and environmental factors in Ethiopia (Ahmed et al., 

2021), Mali (Benedict et al., 2020) and Rwanda (Uwiringiyimana, 2019).  

 

The spatial model described above is fitted within a Bayesian framework by specifying non-

informative priors for estimating the posterior distribution of fixed effects and spatial random 

effects' variance parameters. For the fixed effects' regression coefficients, non-informative priors 

with normal distributions of mean and precision N(0, 0.001) are specified. Whereas, for the 

spatially structured random effects, vague gamma prior of (1, 0.00005) for the spatial decay 

parameter and inverse gamma prior for the precision parameter are specified. Another highly 

dispersed inverse gamma distribution is specified to the variance of the spatially unstructured 

random effects. The Bayesian inference is carried out using the R library INLA which implements 

the Integrated Nested Laplace Approximation (INLA) approach for latent Gaussian models (Rue 

et al., 2009). Bayesian inference using INLA is a computationally efficient alternative to the 

Markov Chain Monte Carlo (MCMC) that is designed to approximate the MCMC estimations in 

latent Gaussian models, including generalized linear mixed models and spatial models (Rue et al., 

2009). 

 

4. Results 

4.1.  Model Validation 

For model comparison and selection, the deviance information criterion (DIC), developed by 

Spiegelhalter et al. (2002) as a measure of model complexity and fit, is used. Smaller values of 

DIC indicate a better trade-off between the model complexity and fit. The models with spatially 

                                                 
4 Precision (τ ) =1/variance 
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structured and unstructured random effects yielded the smallest DIC relative to the traditional 

logistic models with independent random errors and logistic models with random intercepts (Table 

2). For the final logistic spatial models, the odds ratio of stunting associated with 95% credible 

intervals are estimated and reported for the different child, maternal, household, and climatic 

factors in Table 3. A credible interval is the Bayesian equivalent of the confidence interval, in 

which an unobserved parameter value falls with a given probability. However, unlike confidence 

intervals, credible intervals are dependent on the prior distribution specified for the parameter 

(Edwards et al., 1963). 

 

Table 2. DIC of logistic regression, logistic regression with independent random intercept 

for clusters and logistic regression with spatially random effects 
 Basic Logistic Logistic + IREE Logistic + IRE+SRE 

Ethiopia 11578 11120 11099 

Egypt 12498 11228 11042 

Uganda 3913 3842 3833 

 
4.2.  Overall estimates 

The average effects of climatic variability as well as the child, mother and household 

characteristics and socioeconomic determinants of health which the child live in, on stunting status 

are estimated across each country's population using different models with different sets of climatic 

covariates. That is, for each country, a series of models are fitted to test for non-linearities in 

temperature and precipitation and interactions between them. This includes the estimation of 

models that include only linear temperature and precipitation terms, models that include quadratic 

climate terms, and models that include quadratic climate terms and temperature-precipitation 

interaction term. Also, models with historical average temperature and precipitation are examined. 

By evaluating these models, the preferred model specification appeared to be the one with 

quadratic temperature and precipitation anomalies terms, which excludes the interaction term and 

the average historical climate averages that appeared to be not statistically significant. The effect 

of the enhanced vegetation index (EVI) is also tested but turned to be insignificant in the three 

countries. One possible reason for this result is that EVI is considered as a mediator variable 

between climate and malnutrition. 

 

Figure 3 compares the parameter estimates and their corresponding 95% credible intervals for the 

preferred model specification across the three studied countries and Table 3 reports the 

corresponding odds ratio (OR) estimated from the geospatial regression model accounting for the 

spatial autocorrelation structure. The analysis demonstrates that there are additional elements at 

play. The disparities in health between rich and poor, and advantaged and marginalized sectors of 

society are remarkable. In Ethiopia and Uganda, middle- and high-income households have the 

lowest rates of stunting in children under the age of five relative to poor households. In Egypt, 

expanding protected water resource coverage to the population tends to significantly improve child 

nutrition. The results show that mother education plays a significant role in child nutritional status. 
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Children with at least secondary educated mothers (OR = 0.73; CI: 0.63, 0.84), (OR = 0.64; CI: 

0.42, 0.96) and (OR = 0.36; CI: 0.22, 0.57) are less likely to be stunted compared to their 

counterparts for Egypt, Ethiopia, and Uganda, respectively. The mother’s Body Mass Index (BMI) 

seems to be significantly important only in Ethiopia and Uganda in reducing the probability of 

under five children stunting. Child’s age depicts a quadratic relationship with the log odds of 

stunting in Ethiopia and Uganda, in contrast to Egypt where the association is linear in the sense 

that stunting is more prevalent among older children. The model also indicates that female children 

are less likely to be stunted relative to male children in the three countries. Although the child’s 

birth order and the mother’s age at pregnancy and working status have no significant effect in 

Egypt and Uganda, they are significant determinants of stunting in Ethiopia. That is, the odds of 

stunting in Ethiopia are significantly higher among later born than firstborn children; but 

significantly decreases as maternal age increases and is significantly lower among working 

mothers.  

 

For the relationship between the climatic variables and children’s stunting, it is found that children 

in Egypt who reside in geographic areas with precipitation anomalies below the long-term average 

conditions (OR = 1.66; CI: 1.11, 2.47) are less likely to be stunted compared to their counterparts. 

Maintaining the influence of spatial autocorrelation and other covariates constant, children who 

live in warmer clusters (OR = 3.2; CI: 1.17, 8.85), are more likely to be stunted compared to their 

counterparts in Egypt. In Ethiopia, children from rich households (OR = 0.65; CI: 0.57, 0.75), and 

those with working mothers (OR = 0.87; CI: 0.78, 0.97) have lower odds of stunting. The model 

results highlight also that Ethiopian children who resided in the “arid” geographic locations are 

more likely to be stunted compared to those who resided in the “wet” geographic locations. 

However, no significant impacts of climate anomalies on stunting were detected in Uganda.  
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Figure 3. Parameter estimates along with 95% credible intervals for the preferred model 

specification 
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Table 3. Odds ratios and associated 95% Credible Intervals (CI) for the association between 

stunting and the climate variables as well as the child, mother and household characteristics 
 Ethiopia Egypt Uganda 

Variables Mean 0.025 0.975 Mean 0.025 0.975 Mean 0.025 0.975 

Place of residence (reference: Rural) 

    Urban 0.87 0.66 1.14 1.13 0.90 1.42 1.02 0.77 1.35 

Wealth Status (reference: Poor) 

    Middle      0.80* 0.70 0.90 0.92 0.80 1.07 0.81 0.65 1.02 

    Rich                        0.65* 0.57 0.75 1.11 0.91 1.35 0.56* 0.44 0.73 

Water Source (reference: Not protected) 

    Protected  1.03 0.92 1.16 0.65* 0.44 0.97 0.89 0.73 1.09 

Toilet facility (reference: Not improved) 

    Improved 0.86 0.69 1.07 1.00 0.78 1.29 0.99 0.78 1.27 

Mom Education (reference: No education) 

    Primary 0.79* 0.62 0.99 0.9 0.76 1.05 0.63* 0.51 0.77 

    Secondary or 

higher 

0.64* 0.42 0.96 0.73* 0.63 0.84 0.36* 0.22 0.57 

Maternal age 0.98* 0.96 0.99 0.99 0.98 1.01 0.99 0.96 1.01 

Mother’s BMI 0.97* 0.95 0.99 0.99 0.98 1.002 0.95* 0.93 0.97 

Mother is working (reference: No)                     

    Yes 0.87* 0.78 0.97 1.12 0.96 1.29 0.87 0.69 1.10 

Child’s age 

(months) 

1.11* 1.09 1.12 1.02* 1.01 1.03 1.09* 1.05 1.13 

Child’s age2 0.999 0.998 0.999 0.999* 0.998 1.00 0.999* 0.998 1.00 

Child’s gender (reference: Boy)  

    Girl 0.78* 0.71 0.86 0.81* 0.74 0.90 0.85* 0.72 0.9999 

Child’s birth order 1.06* 1.02 1.09 0.99 0.94 1.04 0.97 0.91 1.03 

Average lifetime 

temp anomaly 

0.76 0.19 3.05 3.20* 1.17 8.85 40.8 0.39 4404.5 

Average lifetime 

temp anomaly2 

0.87 0.62 1.21 0.82 0.65 1.02 0.38 0.096 1.50 

Average lifetime 

precip anomaly 

0.79* 0.63 0.996 1.09 0.74 1.61 0.71 0.31 1.60 

Average lifetime 

precip anomaly2 

0.83* 0.70 0.999 1.66* 1.11 2.47 0.997 0.52 1.92 

Random Effects          

   Unstructured 

variance  
5.710-5 0.0008 1.510-5 0.699 0.561 0.884 0.016 0.015 0.017 

   Structured 

variance  

0.371 0.278 0.528 0.719 0.529 0.992 0.887 0.873 0.899 

   Range (in Km) 50.00 31.77 74.17 27.33 19.5 39.31 122.1 115.6 124.0 

(*) indicates the significance of the coefficient at 0.05 level of significance. 
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Figure 4. Effects of the average life exposure anomalies (temperature on the left and 

precipitation on the right) on stunting along with 95% credible intervals in Egypt (top), 

Ethiopia (middle) and Uganda (bottom) 
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4.3.  Variation in Climate Effects 

To further understand the climate change patterns on stunting, the probability of under five 

children being stunted is plotted across the range of temperature and precipitation anomalies, left 

and right panels of Figure 4, respectively, holding all categorical variables at the reference level 

and the other continuous variables at their means. Inspecting the estimation results, an increase in 

temperature anomalies in Egypt is clearly associated with an increase in the probability of stunting. 

Figure 4 also shows that a decline in the precipitation in Egypt to below the average historical level 

by 1 standard deviation is associated with an increase in the probability of stunting by almost 3%. 

In general, it is expected that precipitation deficits are associated with poor nutritional outcomes 

and leads to increased stunting. However, results also show that higher precipitation levels than 

average in Egypt slightly increases child stunting. This can possibly be attribute to the surge in 

waterborne sicknesses, which is in line with the findings of Cornwell and Inder (2015) in urban 

Indonesia. However, larger standard errors are associated with this increasing effect indicating 

higher uncertainty about such effect. We can also conclude that the average life-time precipitation 

exposure is a statistically significant predictor of stunting in Ethiopia in the sense that dry spells 

are associated with relatively higher likelihood of stunting. It is also evident that during spells of 

excess rainfall that the probability of stunting may increase or decrease due to the existence of two 

opposite forces. One is the increase in disease transmission that reduces child nutritional health. 

The second is the increase in crop production that improves child nutritional health through 

increased food availability. If the former effect outweighs the latter, it will result in an increase in 

the probability of child stunting during spells of high precipitation, whereas the probability of 

stunting will be reduced if the latter offsets the former. Those associations are robust across the 

studied Nile Basin countries, which is quite important given the detrimental vulnerability of the 

region to food insecurity and climate change (IPCC, 2014). 
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Figure 5. Posterior mean (left) and standard deviation (right) of the spatial random effects 

in Egypt (top), Ethiopia (Middle) and Uganda (Bottom) 
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4.4. Geographical Patterns of Stunting and Significant Subnational Variations 

The posterior mean of the spatial effects is shown in the left panels of Figure 5 with darker colors 

indicating higher spatial effects, whereas the right panels of the same figure show the associated 

standard errors which are clearly lower in densely sampled regions. The figure depicts spatial 

variations in the odds of stunting across the three countries. It is evident from Figure 5 that Lower 

Egypt (except the west of the Delta) exhibits higher risk of stunting among children aged 0-59 

months relative to upper Egypt. Whereas the highest risks of stunting in Ethiopia are spotted in 

Amhara followed by the southern Ethiopian regions. In Uganda, it is most of the south-west part 

of the country that exhibits high risks of stunting among children aged 0-59 months. 

 

Based on the preferred model specification that accounts for the spatial variations within each 

country, maps of the predicted probabilities of stunting at the observed clusters are produced in 

Figure 6. The results highlight that the highest probabilities of stunting are clustered in Egypt 

mainly in Fayoum, Sharqia and Suhag, which are densely populated governorates characterized 

by higher levels of poverty. Whereas for Ethiopia, the highest probabilities of stunting are likely 

to be observed in the region of Amhara which is a region that experiences more than usual natural 

and manmade distresses, including recurring droughts and famines, civil conflicts, and revolutions. 

These incidents seem to have significant effects on agricultural production and food insecurity, 

and hence child nutrition. In Uganda, it is the south-west region that suffers from higher risks of 

stunting relative to the rest of the country. This region of Uganda has proven to have a persistently 

high level of child stunting due to several risk factors mainly poor socio-economic ability of 

households, lack of good child health feeding practices, and poor hygiene practices (Bukusuba et 

al., 2017; and Vella et al., 1995). This further justifies why climate change variables have no 

significant effect in Uganda and calls for more targeted interventions into poverty alleviation with 

a nutrition focus. 
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Figure 6. Estimated probabilities of stunting at observed clusters in Egypt (top left), 

Ethiopia (top right) and Uganda (bottom) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion and Conclusion 

Given the global concern regarding climate change and its impacts on health, this paper attempts 

to fill a gap in the existing literature on nutritional vulnerability of children of age five and under 

in African developing countries, and more specifically in the Nile Basin countries. Understanding 

how climate impacts this particularly vulnerable group will significantly contribute to the decision-

making process of policymakers in Egypt, Ethiopia and Uganda. This is achieved by answering 

key research questions such as, whether and how climate change impacts child nutrition in the Nile 

Basin countries as reflected in higher stunting rates. It is also necessary to identify which regions 

of the studied countries are particularly more vulnerable or most impacted by climate change. The 
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choice of studied countries is not only driven by data availability, but also because they provide a 

sufficient diversity and coverage in the examination of the Nile Basin and its disparities. 

 

Socioeconomic inequalities in health and healthcare occur everywhere. In the face of climate 

change, they are accentuated by poverty and under development. Most health disparities between 

and within countries can be mitigated through understanding the fundamental reasons of 

malnutrition and unhealthy behaviors. This paper investigates the underlying socioeconomic 

causes and the impact of climate change on under five morbidities. The effects of those conditions 

are revealed by disaggregating the prevailing under-five child malnutrition patterns across the Nile 

Basin countries. On the one hand, the paper draws attention to the relationship between climatic 

change and under five child malnutrition, utilizing a methodological structure that takes into 

consideration spatial and temporal confounders for three countries of the Nile Basin. The study 

contributes to the climate-nutrition literature by investigating the relationships between 

temperature and precipitation variability and child stunting across a diverse set of Nile Basin 

countries taking into consideration the socioeconomic factors of health such as education, urban-

rural discrepancies, and wealth.  Prevailing literature mostly supports that warmer and arid 

circumstances increase child stunting (Andalón et al. 2016; Davenport et al. 2018; Groppo and 

Kraehnert 2016; Randell et al. 2020; Thiede and Gray 2020; Thiede and Stube 2020). However, 

this paper underlines the complexity of this association through results that contradicts the above-

mentioned assumption in some of the countries and results that are in line with it in others. On the 

one hand, Egypt’s warmer weather seems to increase the probability of stunting, while periods of 

above average precipitation are detrimental to child nutrition. This could be due to increased 

localized flooding that reduces food accessibility and availability in addition to increased 

waterborne diseases. On the other hand, the results for Ethiopia show that the relationship between 

precipitation and stunting follows an inverted-U-shaped pattern which is consistent with the 

findings of Cooper et al. (2019) and Thiede and Stube (2020). This indicates that the impacts of 

changes in the climate on children malnutrition vary by region.  The results in the paper highlight 

also the variations in stunting prevalence within the one country and across the different countries. 

It is thus evident that efforts to reduce the burden of infants and under-five children stunting should 

consider geographical heterogeneity and adaptable risk factors.  

 

It is also worth noting that the public health community's attention has been attracted increasingly 

to the social determinants of health during the last two decades, which are elements other than 

medical care that can be impacted by social policies and shape health in profound ways. Social 

influences at the individual, family, neighborhood, and national levels have been shown to have a 

significant impact on children's health. Mother access to schooling is another important predictor 

of child nutrition. Improving child health in the Nile Basin countries necessitates developing the 

social environment conditions, mother education, and mother's access to employment. Structural 

adjustments to enhance access to education and work for women, as well as poverty reduction, are 

likely to be the most successful interventions. The strength of this paper lies in its significance for 
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policymaking. The results of the model adopted in this study are expected to aid in cluster-level 

planning for child health. The mapping of the variation in child malnutrition associated with 

climate change and socioeconomic determinants of health can help with improving the allocation 

of limited resources to clusters with varying needs of healthcare and social policies.  
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