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Abstract 

There is no doubt that the oil price shocks significantly affect the macroeconomic 

fundamentals and financial stability of the oil-producing countries, mainly in crisis 

times. The recent oil price shocks coupled with the COVID-19 pandemic motivated us 

to investigate the connectedness and risk transmission among oil shocks and banking 

sectors in the Gulf Cooperation Council (GCC) economies over the period from June 

30, 2006, to September 9, 2021. We use the multilayer information spillover networks 

to consider mean and volatility spillover effects, and extreme risk spillover effects 

between oil price shocks and GCC banking sectors. Empirical findings indicate a higher 

degree of spillover during the crisis sub-period. Further, we find a significant increase 

in the number of unique edges on extreme risk spillover and volatility spillover layers 

happened during COVID-19 pandemic period. The finding of this paper has several 

significant implications for regional portfolio selection and risk management, 

alleviating financial systemic risk and making hedging and investment strategies. 
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1. Introduction  

          Oil price shocks are at the centre of the oil industry and are main driver of the future cash 

flows of industrial companies. The accurate prediction of crude oil price is of interest for a wide 

range of applications such as assessing macroeconomic risks, making macroeconomic policies 

and asset allocation (Dai and Kang, 2021). The oil price shocks can affect the financial systems 

in the GCC countries which are denominated by the banking sector and their economies are 

mainly dependent on oil-related products (Maghyereh and Abdoh, 2021).  In addition, oil price 

shocks influence the government’s spending, which impacts the business environment and the 

lending activity of a country's banks. The great Collapse of oil prices 2014-15 (The average oil 

price per year is $41.85), and the US – Russian – OPEC disagreements on March 2020 (The 

average oil price per year is $20.37), combined with COVID-19 virus outbreak have renewed 

the interest to the study of the connectedness of oil price shocks and financial sectors. The 

recent COVID-19 pandemic intensification generates a different set of challenges for the global 

economy and financial systems. Therefore, understanding the impact of oil price shocks on 

financial systems and systemic risk is vital for a country's financial stability. 

          In this paper, two main facts have motivated us to examine the connectedness and risk 

transmission between oil shocks and banking sectors in the GCC economies. The first fact 

relates to the significant influence of the recent oil price shocks on macroeconomic 

fundamentals and financial sectors in oil-rich countries including the GCC region. The oil 

prices have dropped due to the decline of the global economy demand (caused by lockdown 

measures and flights) and the rise abruptly and rapidly of supply (caused by the Saudi Arabia-

Russia oil prices war in March 2020 and the failure of the OPEC+ to agree on the terms of 

stable supply cuts). The second fact relates to the absence of studies that address and combine 

the impact of the COVID-19 pandemic, regional political uncertainty, and recent 

demand/supply oil shocks on the dynamic connectedness between the oil market and banking 

sectors in GCC economies. Most of the literature in this area focused on the impact of oil price 

changes on stock markets (Arouri & Rault, 2012; Wang et al., 2013, Bastianin et al., 2016; 

Ding et al., 2017; Basher et al. 2018; among others). Despite this, the number of studies 

investigated the relationship between oil and banking sectors in oil-exporting economies are 

very scarce; and thus, very little attention has been paid to risk transmission across oil market 

and banking sectors in the GCC economies, notwithstanding its policy and industry importance 

(Alqahtani et al., 2020). 
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          This paper adds to the existing literature from several novel aspects: First, we tend to fill 

the gap in the literature by examining the relationship and dynamic connectedness among oil 

price shocks and banking sectors in the GCC economies before and during the COVID-19 

pandemic. This study provides a comparative analysis of the effect of oil supply and demand 

shocks on the banking sectors of GCC countries. Second, our methodology based on the 

multilayer information spillover networks considers the mean, volatility, and extreme risk 

spillover effects, which can better describe the connectedness among oil price shocks and 

banking sectors more efficiently. Multilayer information spillover networks are a powerful tool 

to investigate the connectedness and risk transmission with various relationships 

simultaneously and capture the diversity and heterogeneity of information transmission. The 

traditional Diebold and Yilmaz (DY) spillover index approach (Diebold and Yilmaz, 2009, 

2012) only consider the return and the volatility spillover that respectively represent 

information spillover effects in the first and second moments of asset returns and ignore the 

extreme tail risk spillover in asset returns that indicates spillover effects in high moments (e.g., 

skewness and kurtosis). The DY spillover index is a single-layer network focusing on a specific 

type of information spillover effect and ignoring the diversity and heterogeneity of information 

spillovers (Wang et al. 2021 (a)). Moreover, with a single-layer network, it is difficult to 

capture the diversity and heterogeneity of information transmission and its interconnectedness 

among financial institutions (Wang et al. 2021 (b)). To the best of our knowledge, this study is 

the first that investigates the connectedness and risk transmission among oil shocks and 

banking sectors using multilayer information spillover networks. Third, the sample period of 

this study includes some important events (such as the global financial crisis, the European 

sovereign debt crisis, the 2014-15 oil price drop, political uncertainty caused by the Qatar 

diplomatic crisis, and Arab Spring, the oil price war, and the announcement of COVID-19 as 

a global pandemic in March 2020, and the oil price crash on April 20, 2020). Consequently, 

the sample period can lead to different multilayers information spillover on the return, volatility, 

and extreme risk between oil price shocks and GCC banking sectors. 

          The empirical results show that (Ⅰ)The peak degree on each layer of multilayer 

information spillover networks mostly has a synchronization effect, however, there was a 

significant asynchronous effect during crisis times and COVID-19 pandemic. (Ⅱ) The pattern 

of the unique edge is different than the pattern of the degree, suggesting that the increasing 

connection between GCC banking sectors and oil price shocks is mainly attributed to the rise 
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of similar edges. (Ⅲ) a significant increase in the number of unique edges on extreme risk 

spillover and volatility spillover layers happened during COVID-19 pandemic period (2020-

2021). (Ⅳ) The average edge overlap is lower than 2 on average, so the information obtained 

by the network is one-sided no matter which layer is considered separately. The finding of this 

paper has several significant implications.  First, controlling the demand and supply oil risk 

shocks alleviate financial systemic risk. Second, GCC banking systems are vulnerable to 

changes in oil prices during crises period. Third, understanding the connectedness and risk 

transmission improves the regional portfolio diversification, and hedging strategies, to make 

sound investment decisions. 

          The rest of this paper is organized as follows. In section 2 we review the related literature. 

Section 3 introduces the empirical methodology. Section 4 present the data specifications and 

preliminary results. Section 5 discusses the empirical findings. Finally, section 6 concludes the 

paper. 

 

2. Literature review 

          The connectedness and risk transmission between the oil price shocks and financial 

markets has drawn much attention over the past decades. Most of the existing recent literature 

focused on the impact of oil price changes on stock markets (e.g., Escobari and Sharma, 2020; 

Enwereuzoh et al. 2021; Gupta et al. 2021; Jiang et al. 2021; Anand and Paul, 2021; Ziadat et 

al. 2022; among others). The oil price shocks may increase the marginal cost of production, 

decrease future cash flows, and negatively affect the value of the stock.  According to Demirer 

et al. (2020), The oil demand shocks affect positively the stock market returns for 21 countries, 

regardless of the status of the country as an importer/exporter or advanced/emerging economy. 

However, the effect of supply-related shocks is more heterogeneous across markets, with 

mostly an adverse impact on stock market returns. Some research papers find a negative 

relationship between the oil market and stock market (e.g., Jones and Kaul, 1996, Chiou and 

Lee, 2009; Wang et al., 2013), positive relationship (e.g., Chen et al., 1986; Arouri and Rault, 

2012), and no significant relationship between oil shocks and the stock market (e.g., Wei, 2003; 

Zhang, 2017). 

          The effect of oil price shocks is not limited to stock markets but also extended to bond 

markets (e.g., Kang et al., 2014; Gormus et al. 2018; Nguyen et al. 2018; among others). 
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According to Demirer et al. (2020), unanticipated changes in oil prices generates inflationary 

pressures, leading the central banks to tighten their monetary policy by raising the interest rates, 

which in turn get reflected in bond market yields. Shahzad et al. (2021) examine the Granger 

causal relationship from implied oil volatility to US high-yield and investment-grade corporate 

bonds. They find that oil price volatility predicts the future values of the high-yield bond market 

and its energy sector. Similarly, Dai and Kang (2021) find a significant Granger causal 

relationship from long-term government bond yield and corporate bond yields spread to oil 

returns. Nazlioglu et al. (2020) find that oil prices tend to predict bond prices in most oil 

exporting countries.  

          Another stand of literature has investigated the impact of oil price shocks on (Ⅰ) 

macroeconomic fundamentals (e.g., Amiri et al. 2021; Sheng et al. 2020; Yildirim and Arifli, 

2020; Ahmed et al. 2018; Ju et al. 2016; among others), (Ⅱ) CO2 emissions (e.g., Kassouri et 

al. 2021; Zheng et al. 2021; among others), (Ⅲ) commodities (e.g., Yang et al. 2021; Ezeaku 

et al. 2021; Zhang and Qu, 2015; among others), (Ⅳ) cryptocurrency (e.g., Jareño et al. 2021; 

Yin et al. 2020; among others), (Ⅴ) green investment (e.g., Kassouri and Altıntaş, 2021; Lee 

et al. 2020; Dutta et al. 2020; among others) 

          With the massive body of literature that investigated the effect of oil price shocks on 

stock markets, bond markets, and macroeconomic fundamentals, only a few studies have 

examined the impact of oil price shocks on the banking sectors and financial systemic risk. 

Maghyereh and Abdoh (2021) investigate the impact of oil shocks (oil supply and demand 

shocks) on GCC banking systems over the period from January 2006 to September 2020. Using 

data from 51 banks and two different systemic risk measures (Delta CoVAR and marginal 

expected shortfall), they find that oil supply shocks increase the systemic risk of GCC banks, 

and the effect of supply shocks is more important that the effect of demand shocks. Ma et al. 

(2021) study the impact of oil shock (supply shock, aggregate demand shock, specific demand 

shock, and speculative shock) on risk level in China's banking sector. Using data of 16 listed 

banks in China from January 2011 to December 2019, empirical results show that Oil 

speculative shock increases bank risk levels and the oil supply shock reduces the risk in China's 

banking sector. Qin (2020) apply structural VAR analysis to study how different oil structural 

shocks affect the Composite Indicator of Systemic Stress in twenty countries for the period 

from January 2004 to December 2015. The study shows the financial systemic risk of oil-
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importing economies, are affected negatively by oil supply and aggregate demand shocks and 

affected positively by oil-specific demand shocks. 

          In this paper, we tend to fill the gap in the literature by examining the relationship and 

dynamic connectedness among oil shocks and banking sectors in the GCC economies 

controlling for the impact of global banking sectors as well as international risk factors. 

Theoretically, an increase in the oil price for the oil-exporting countries will lead to an increase 

in economic growth due to the increase of government spending, thus leading to an economic 

expansion and the financial sector will be affected negatively. In this paper, we employ a novel 

framework of our methodology based on the multilayer information spillover networks that 

consider the mean, volatility, and extreme risk spillover effects to investigate the connectedness 

and risk transmission among oil shocks and banking sectors in the GCC economies. 

 

3. Data and Econometric Methodology 

3.1. Constructing oil price shocks 

          Several approaches have been used in the literature to classify changes in oil prices into 

demand-driven or supply-driven. In his seminal paper, Kilian (2009) decomposes changes in 

real oil prices into oil supply shocks, aggregate demand shocks, and specific demand shocks 

that are related to the crude oil market to examine the impact of higher oil prices on the U.S. 

macroeconomic aggregates. Results indicate that the impact of oil process changes on real GDP 

and inflation depends on the nature and source of the oil price shocks. Since then, Kilian’s 

approach has been extensively used in the literature to investigate the structural impact of 

different oil shocks on both macroeconomic and financial conditions (e.g., Alsalman & Karaki, 

2019; Wang et al., 2014, Zhao et al., 2016, among others). However, all series included in the 

Structural VAR model should be correlated with oil prices changes to accurately estimate and 

identify the oil price shocks.  

          To overcome this problem, Ready (2018) disentangles oil price changes into three 

shocks: demand, supply, and risk shocks, using prices of traded financial assets (Wen et al., 

2021). Another unique advantage of this approach is its ability to decompose shocks on a daily 

frequency which is of paramount importance to our study and strengthens the empirical 

analysis (Malik and Umar, 2019). To this end, three main series have been collected to 

disentangle oil price changes into supply shocks, demand shocks, and risk shocks. These 
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variables are the return of World Integrated Oil and Gas Producer Index as a proxy of oil 

producing-firms, the second nearest future maturity of NYMEX Crude—Light Sweet Oil 

futures contract as a measure of oil price changes, and the Chicago Board Options Exchange’s 

Volatility Index (VIX) as a proxy for changes in expected returns.  

Accordingly, supply, demand, and risk shocks are orthogonal and could be defined as follows: 

𝑋𝑡 ≡ [

Δ𝑝𝑡

𝑅𝑡
Prod 

𝜉VIX,𝑡

] , 𝑍𝑡 ≡ [

𝑠𝑡

𝑑𝑡

𝑣𝑡

] , 𝐴 ≡ [
1    1    1
0    𝑎22    𝑎23

0    0    𝑎33

]                                            (1) 

Where Δ𝑝𝑡represents oil price changes at time 𝑡, 𝑅𝑡
Prod  is the return on the oil-producing firms, 

𝜉VIX,𝑡  denotes the residuals from an ARMA (1,1) model of the VIX index. Finally, 

𝑠𝑡, 𝑑𝑡, 𝑎𝑛𝑑 𝑣𝑡 indicate supply shocks, demand shocks, and risk shocks, respectively. Next, Oil 

price shocks are mapped by matrix 𝐴 into the observable variables so that: 

𝑋𝑡 = 𝐴𝑍𝑡                                                                               (2) 

The following restriction is introduced to ensure that orthogonality of the oil price shocks: 

𝐴−1Σ𝑋(𝐴−1)𝑇 = [

𝜎𝑠
2    0    0

0    𝜎𝑑
2    0

0    0    𝜎𝑣
2

]                                                     (3) 

Where Σ𝑋  denotes the covariance matrix of the observable 𝑋𝑡  whereas 𝜎𝑠
2, 𝜎𝑑

2,  and 𝜎𝑣
2  are 

volatilities of the supply, demand, and risk shocks, respectively. Finally, volatilities are 

normalized so that they sum up to the total oil price changes. 

3.2 Multilayer network measures 

Our proposed multilayer information spillover networks including mean spillover layer, 

volatility spillover layer and risk spillover layer are based on the Granger causality tests in 

mean, volatility and risk of Hong (2001) and Hong et al. (2009). In this section, we firstly 

introduce how to examine the information spillover effects. We then construct the multilayer 

information spillover networks and finally describe some multilayer network measures to 

investigate the interconnectedness between oil shocks and banking sectors. 

3.2.1 Information spillover effects test 

We adopt the sample cross-correlation function (CCF)-based Granger causality test to 

estimate information spillover effects including mean spillover effect, volatility spillover effect 
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and extreme risk spillover effect between two variables, proposed by Hong (2001) and Hong 

et al. (2009). This method is divided into two steps. The first step selects the appropriate model, 

e.g., the ARMA-GARCH model, to fit return series of variable i and obtain the estimations of 

the residuals 𝜀𝑖̂,𝑡 and the conditional variances ℎ̂𝑖,𝑡. The mean spillover effect is directly tested 

against the standardized residuals 𝑢̂𝑖,𝑡  (see, Eq. Error! Reference source not found.). The 

volatility spillover effect is tested against the centralized standard residuals (see Eq. Error! 

Reference source not found.). To test the risk spillover effect, we firstly estimate Value-at-

Risk (VaR) series 𝑉̂𝑖,𝑡  of variable i through the standardized residuals and the conditional 

variances (see Eq. Error! Reference source not found.) and then obtain the risk indicator 𝑍̂𝑖,𝑡 

for testing, following Hong et al. (2009) (see Eq. Error! Reference source not found.). 

 𝑢̂𝑖,𝑡 = 𝜀𝑖̂,𝑡/(ℎ̂𝑖,𝑡)
1

2 (1) 

 𝑣𝑖,𝑡 = 𝜀𝑖̂,𝑡
2 /ℎ̂𝑖,𝑡 − 1 (2) 

 𝑉̂𝑖,𝑡 = −𝜇̂𝑖,𝑡 − 𝑧𝛼√ℎ̂𝑖,𝑡 (3) 

 𝑍̂𝑖,𝑡 = 1(𝑟𝑖,𝑡 < −𝑉̂𝑖,𝑡) (4) 

 

where 𝑍𝛼 is the left 𝛼 −quantile for the standardized residuals,  is the return of variable , 

and  is an indicator function. When the condition is met, the risk indicator Zi,t takes a value 

of 1, otherwise it takes a value of 0. 

The second step constructs a statistic 𝑄 based on the estimated series in the first step to test 

whether there is an information spillover effect between pairs of variables. We take the Granger 

causality test in risk for examining extreme risk spillover effect from variable 2 to variable 1 

as an example. The null hypothesis of the Granger causality in risk is H0: 𝐸(𝑍1,𝑖 ∣ 𝐼1,𝑡−1) =

𝐸(𝑍1,𝑡 ∣ 𝐼𝑡−1)  against the alternative H1: 𝐸(𝑍1,𝑖 ∣ 𝐼1,𝑡−1) ≠ 𝐸(𝑍1,𝑡 ∣ 𝐼𝑡−1) , where I1,t-1={Z1,t-

1,…, Z1,1} and I2,t-1={Z2,t-1,…, Z2,1} are the information sets available at time t-1 for variables 1 

and 2, and It-1={I1,t-1, I2,t-1}. 

suppose 𝑍̂1,𝑡 and𝑍̂2,𝑡 are two series of estimated risk indictors of variables 1 and 2, the 

sample cross-correlation function (CCF) is defined 

 𝜌̂(𝑗) =
𝐶̂(𝑗)

(𝑆̂1𝑆̂2)
,                    𝑗 = 1,2, … , 𝑇 − 1 (5) 

where 𝑆̂𝑖 is the sample standard deviation of 𝑍̂𝑖,𝑡，𝑇 is the sample size, and  𝐶̂(𝑗) is the sample 

cross-covariance function between 𝑍̂1,𝑡 and 𝑍̂2,𝑡 at positive lag  and is defined by: 
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 𝐶̂(𝑗) = 𝑇−1 ∑  𝑇
𝑡=1+𝑗 (𝑍̂1,𝑡 − 𝑍̂̅1)(𝑍̂2,𝑡−𝑗 − 𝑍̂̅2), 0 ≤ 𝑗 ≤ 𝑇 − 1 (6) 

Where 𝑍̂𝑖 = 𝑇−1 ∑ 𝑍̂𝑖,𝑡
𝑇
𝑡=1 , 𝑖 = 1,2. Following Hong et al. (2009), we construct a statistic Q 

that contains the weighted average sum of sample CCFs of all lag orders, given by: 

 𝑄 = {𝑇 ∑  𝑇−1
𝑗=1 [𝑘2(𝑗/𝑀)/𝜌̂2(𝑗) − 𝐶𝑇(𝑀)]}/(2𝐷𝑇(𝑀))1/2 (7) 

where 𝑀 is effective lag truncation order, and 𝑘(∙) is the kernel function. 

Hong et al. (2009) point out the Daniel kernel function has the best results. The Daniel 

kernel function not only takes all lag orders into account, but also considers a decreasing weight 

with an increasing time lag, which is consistent with the fact that financial markets are more 

susceptible to recent events than long-term events. Specifically, the Daniel kernel function is 

defined as  

 𝑘(𝑥) = sin(𝜋𝑥)/(𝜋𝑥) (8) 

In Eq. (8), 𝐶𝑇(𝑀)and 𝐷𝑇(𝑀) are the centering and standardization constants respectively, 

which are expressed as 

 𝐶𝑇(𝑀)& = ∑  𝑇−1
𝑗=1 (1 − 𝑗/𝑇)𝑘2(𝑗/𝑀), (9) 

 𝐷𝑇(𝑀)& = ∑  𝑇−1
𝑗=1 (1 − 𝑗/𝑇){1 − (𝑗 + 1)/𝑇}𝑘4(𝑗/𝑀) (10) 

If the null hypothesis of the Granger causality in risk is true, i.e., there is no extreme risk 

spillover effect from variable 2 to variable 1, the statistic 𝑄 is convergent to the standard normal 

distribution. Since 𝑄 tends to be positive infinity as 𝑇 increases, the test value selects the right-

hand side of the standard normal distribution. When the estimated value 𝑄 is higher than the 

right-tail critical value of the standard normal distribution at a given significance level 𝛽 (in 

our case, 𝛽 = 0.05), it is considered that variable 2 has an extreme risk spillover effect on 

variable 1. Similarly, when considering the standardized residuals and conditional variances of 

variables 1 and 2 in Eqs. (5)-(10), we can obtain mean and volatility spillover effects from 

variable 2 to variable 1 respectively.  

3.2.2 Multilayer information spillover networks 

We propose multilayer information spillover networks Ω = {𝐺[1], 𝐺[2], … , 𝐺[𝐿]}  with 𝐿 

layers and 𝑁  nodes, where 𝐺[𝛼] = 𝐺(𝑉, 𝐴[𝛼])  is the layer 𝛼  of the multilayer information 

spillover networks, where 𝑉 = {1, 2, … , 𝑁} is the set of nodes, and 𝐴[𝛼] is the set of edges of 

layer 𝛼. In each layer, nodes represent variables, and a directed edge indicates that there is a 

corresponding information spillover effect from the starting financial variable to the terminal 

financial variable. In our case, 𝐿 = 3，and we assume that from the first layer to the third layer 
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correspond to the mean spillover layer, the volatility spillover layer and the extreme risk 

spillover layer, respectively. For any two variables 𝑖, 𝑗 ∈ 𝑉, we draw a directed edge from 𝑖 to 

𝑗 on the first (second, third) layer, if variable 𝑖 has a mean (volatility, risk) spillover effect on 

variable 𝑗. 𝐴[𝛼] = {𝑎𝑖𝑗
[𝛼]

}
𝑁×𝑁

is a directed binary connection matrix for all pairs of variables 𝑖 

and 𝑗 in layer 𝛼, where the element 𝑎𝑖𝑗
[𝛼]

 in the matrix 𝐴[𝛼] is defined as: 

  

𝑎𝑖𝑗
[𝛼]

= {
1, if 𝑖 ≠ 𝑗 and 𝑖 has a corresponding spillover effect on j on layer α

0, else 

      (11) 

Thus, multilayer information spillover networks are simplified to a 3 dimensional 𝑁 × 𝑁 

adjacency matrix by mathematical notation. Considering the unpredictability of the financial 

system and dynamic changes of the interconnectedness among variables, we build time-varying 

multilayer information spillover networks using the rolling window analysis. The sample 

interval of the investigated daily return series is divided into rolling windows with width 𝑤 and 

size step 𝛿, where the width 𝑤 is the length of the daily return series in each window, and the 

size step 𝛿 is the interval between two continuous windows. Following Hong et al. (2009), we 

select a width 𝑤 of 240 days and a step size 𝛿 of 20 days, corresponding to one trading year 

and one trading month. Thus, the period for the first window is from the first day to the 240th 

day of the sample period, the period for the second window is from the 21st day to the 260th 

day, and so on. Then, we note time-varying multilayer information spillover networks as Ω𝑡. 

3.2.3 Multilayer network measures 

3.2.3.1 Similarity measures 

In multilayer information spillover networks, we explore whether there is similarity 

between different layers. First, we introduce the degree of layer 𝛼, which indicates the number 

of edges on layer 𝛼, to character the basic feature on layer 𝛼. The greater the degree of a layer 

has, the closer the connectedness among variables on the layer has. The degree of layer 𝛼 is 

defined as 

 𝑎[𝛼] = ∑ 𝑎𝑖𝑗
[𝛼]𝑁

𝑖,𝑗=1,𝑖≠𝑗 , 𝛼 = 1,2, … , 𝐿 (12) 

where 𝑎𝑖𝑗
[𝛼]

 represents the edge (or the corresponding information spillover effect) from 𝑖 to 𝑗 

on layer 𝛼, which is defined in Eq. (18). 

We introduce a similarity measure among different layers, i.e., the Spearman correlation 
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coefficient𝜌[𝛼,𝛽], which is measured to explore the similarity about the rankings of variables 

between layers 𝛼 and 𝛽 and is formally defined as: 

 𝜌[𝛼,𝛽] = 1 −
6 ∑  𝑖 (𝑅𝑖

[𝛼]
−𝑅𝑖

[𝛽]
)

2

𝑁(𝑁2−1)
, 𝛼, 𝛽 = 1,2, … , 𝐿 (13) 

where 𝑁 is the number of variables, and 𝑅𝑖
[𝛼]

 and 𝑅𝑖
[𝛽]

 represent the rankings of variable 𝑖 on 

layers 𝛼 and 𝛽, respectively. 

3.2.3.2 Uniqueness measures 

To quantify how peculiar the structure of layer 𝛼 is, we introduce a uniqueness measure 

𝑈[𝛼] by computing the number of unique edges on layer 𝛼, i.e., 

 𝑈[𝛼] = ∑  𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝑎𝑖𝑗

[𝛼] ∏  𝐿
𝛽=1,𝛽≠𝛼 (1 − 𝑎𝑖𝑗

[𝛽]
) , 𝛼 = 1,2, … , 𝐿 (14) 

which captures the number of edges that exist only on the layer 𝛼  rather than other layers. 

𝑈[𝛼]is 0, only if all edges on layer 𝛼 exist on at least one of the other layers. A larger 𝑈[𝛼] 

represents layer 𝛼 has a greater number of unique edges, indicating the peculiarity of layer 𝛼, 

because if layer 𝛼  is absent, these unique edges will be ignored, i.e., the corresponding 

interconnectedness between variables will not be captured. 

We also consider unique edges of each variable 𝑖 on layer 𝛼, i.e., 

 𝑈𝑖
[𝛼]

= ∑  𝑁
𝑗=1,𝑗≠𝑖 𝑎𝑖𝑗

[𝛼] ∏  𝐿
𝛽=1,𝛽≠𝛼 (1 − 𝑎𝑖𝑗

[𝛽]
) , 𝛼 = 1,2, … , 𝐿, 𝑖 = 1,2, … , 𝑁 (15) 

3.2.3.3 Overlap measures 

 To comprehensively consider multilayer information spillover networks, we can obtain 

a projection network of information spillover networks, denoted asΠ(𝑉, 𝐴), by ignoring the 

fact that the link between two variables belongs to different layers and drawing an edge from 

variable 𝑖 to variable 𝑗 if variable 𝑖 has at least one information spillover effect on variable𝑗. 

𝐴 = {𝑎𝑖𝑗}  is an adjacency matrix for all variables 𝑖  and 𝑗  in the projection network, and its 

element is defined as 

 𝑎𝑖𝑗 = {
1, ∃𝛼, 𝑎𝑖𝑗

[𝛼]
= 1

0, else 
 (16) 

We measure the number of edges in the projection network, i.e., the edges present on at 

least one layer between variables, given by  

 𝐾 = ∑  𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝑎𝑖𝑗 = ∑  𝑁

𝑖,𝑗=1,𝑖≠𝑗 (1 − ∏  𝐿
𝛼=1 (1 − 𝑎𝑖𝑗

[𝛼]
)) (17) 

In multilayer information spillover networks, the same directed edge between variables 
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may exist on different layers. We introduce a measure of average edge overlap 𝑂 to explore 

how many layers each edge appears on average, which is defined as 

 𝑂 =
1

𝐾
∑  𝑁

𝑖,𝑗=1,𝑖≠𝑗 ∑  𝐿
𝛼=1 𝑎𝑖𝑗

[𝛼]
 (18) 

Note that the average edge overlap is 1, only when the connections of each layer are completely 

different, i.e., each edge appears only on one layer of multilayer networks. When all variables 

on all layers are connected identically, the average edge overlap is the number of layers. Thus, 

a greater average edge overlap indicates a higher similarity or homogeneity among layers in 

multilayer information spillover networks. 

To identify relatively important variables, we describe the overlapping degree of variable 

𝑖, which is the sum of edges on variable 𝑖 at all layers. If the overlapping degree of a variable 

is high, it indicates that the variable has strong connection with other variables, so the variable 

is considered to be a central node in multilayer networks. The overlapping degree 𝑂𝑖 of variable 

𝑖 is defined as: 

 𝑜𝑖 = ∑  𝐿
𝛼=1 ∑  𝑁

𝑗=1,𝑗≠𝑖 𝑎𝑖𝑗
[𝛼]

, 𝑖 = 1,2, … , 𝑁 (19) 

 

3.3 Data and preliminary analysis 

          In this study, we used daily closing prices of Refinitiv banking equity indices for GGC 

countries to examine connectedness patterns and risk transmission between oil shocks and 

banking returns in the GCC countries.2  The sample period spans from June 30, 2006, to 

September 9, 2021, with 3958 observations. The sample period is determined by the data 

availability and covers several significant events such as the Global Financial Crisis in 2008; 

the Arab Spring that started in 2010; the oil crises during 2014 and 2016; Qatar diplomatic 

crisis and the COVID-19 pandemic.  

          In addition, we have collected data for the World Integrated Oil and Gas Producer Index, 

the second nearest future maturity of NYMEX Crude—Light Sweet Oil futures contract, and 

the CBOE volatility index (VIX) to calculate oil price shocks. All data has been collected from 

Thomson Reuters DataStream database. 

          The descriptive statistics of all series under consideration are reported in Table 1.  

 

 
2 Saudi Arabia has been excluded from the empirical analysis as Refinitiv Banks Price Index for Saudi Arabia 

only starts from March 29, 2018 which would limit our dataset. 
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Table 1. Descriptive statistics of GCC banking returns and oil shocks 

 Bahrain Kuwait Oman UAE Qatar Demand Shock Supply Shock Risk Shock 

Mean 2.05E-07 8.30E-05 1.23E-05 0.0001 0.0002 -0.0223 0.0075 -0.0025 

Median 0 0.0001 0 2.72E-05 2.75E-05 -0.0248 0.0021 -0.6507 

Maximum 1.166 0.065 0.098 0.092 0.094 15.016 20.038 78.842 

Minimum -1.160 -0.104 -0.104 -0.095 -0.102 -13.221 -15.203 -31.702 

Std. Dev. 0.029 0.011 0.011 0.013 0.014 1.253 2.002 7.512 

Skewness 2.492 -0.651 -0.462 -0.189 -0.216 0.092 0.433 1.271 

Kurtosis 1331.774 12.415 17.692 12.334 11.079 20.924 15.431 10.134 

JB 2.91E+08*** 14897*** 35730*** 14388*** 10793*** 52979*** 25602*** 9457*** 

ADF -41.315*** -58.721*** -54.865*** -54.069*** -60.455*** -22.161*** -71.008*** -63.268*** 

ERS -33.677*** -14.735*** -27.006*** -20.644*** -19.966*** -26.788*** -29.380*** -29.749*** 

Q(10) 644.221*** 39.392*** 83.285*** 113.858*** 20.191*** 51.245*** 73.305*** 14.747*** 

Q2(10) 920.373*** 1684.181*** 2109.441*** 1935.708*** 1282.210*** 1354.552*** 2081.461*** 175.031*** 

ARCH(20) 478.703*** 1028.617*** 1053.206*** 988.689*** 877.908*** 1237.054*** 1265.788*** 161.161*** 

Observations 3957 3957 3957 3957 3957 3957 3957 3957 

Notes: This Table reports the summary statistics of GCC banking returns and oil shocks. JB is the Jarque-Bera test for normality; ADF is the Augmented 

Dickey–Fuller tests the null hypothesis of a unit root whereas ERS is the Elliott, Rothenberg and Stock modified ADF test. Q(20) and Q2(20) are the 

Ljung-Box statistic for serial correlation in the raw series and squared residuals, respectively. ARCH (20) is Engle's ARCH-LM test for autoregressive 

conditional heteroskedasticity up to 20 lags. ⁎⁎⁎ denotes statistical significance at the 1% level. 

 

Table 1 shows that the average returns for all banking sectors in the GCC countries are positive 

where Qatar and Bahrain provide the highest and lowest average returns over the sample period. 

The unconditional volatility is highest for the Bahrain banking sector but smallest for both 

Kuwait and Oman banking sectors. Regarding oil shocks, risk shocks have the highest volatility 

followed by supply shocks and demand shocks (7.5, 2, and 1.2 respectively). Banking returns 

for Kuwait, Oman, UAE, and Qatar are slightly left-skewed while banking return and oil shocks 

are right-skewed. The value of kurtosis is greater than 3 for all variables included in the analysis, 

which implies that the distributions of all the series are leptokurtic (higher peaked around the 

mean with fatter tails). These findings are confirmed by significant statistics of the Jarque-Bera 

test. All series under consideration, therefore, are not normally distributed. Furthermore, results 

from unit root tests, ADF and ERS, are significant indicating that all series are stationary at 

levels. Finally, the series suffer from serial correlation and exhibit an ARCH effect according 

to the Ljung–Box test statistics and Engle's ARCH-LM test.  

 

4. Empirical Results 
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          In the empirical results analysis of this paper, we follow Wang et al. (2021, (b)) and we 

focus on two types of multilayer information spillover networks: (i) static multilayer 

information spillover networks with different lag orders (i.e., M) and (ii) time-varying 

multilayer information spillover networks. 

4.1. Results for similarity measures 

          To investigate the connectedness and risk transmission among oil shocks and banking 

sectors in the GCC economies, we used the multilayer information spillover networks based 

on mean spillover effects, volatility spillover effects, and extreme risk spillover effects. For 

each country’s banking index, we compute the return, and for the other three shocks, we use 

the level value. We use AR(1)-GARCH (1,1)-t model to estimate each series. For time-varying 

multilayer spillover networks, the lag order M is set at 10. To discover whether there is 

similarity among the different information spillover layers, we examine the degree of each 

layer. Fig.1 plot the degree of each layer (mean, volatility and extreme risk) under different lag 

orders M. 

 

Fig 1. Degree of each layer in multilayer spillover networks as functions of lag order M. 

 

          Fig 1. Shows Extreme risk spillover layer has more interconnected edges than the mean 

and the volatility spillover layer at various lags. The strong interconnection on extreme risk 

spillover layer may be explained to the sample period of the study that covers numerous events 

such as the global financial crisis, the 2014-15 oil price drop, political uncertainty caused by 

the Qatar diplomatic crisis, the Arab spring, the oil price war, and the COVID-19 pandemic. 

The degree of the volatility layer increases rapidly when the lag orders increase from 2 to 5, 6 
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to 10 and 13 to 20. This pattern indicates that the market needs some time to respond to past 

information and needs at least 5 days to fully reflect the information. The degree of the mean 

layer shows a slightly upward trend only from 2 to 3. The degree of extreme risk spillover 

increases speedily when the lag order increases from 5 to 12. The degrees of extreme risk and 

volatility spillover layers start to decrease, when the lag order is at a high value (M ≥ 20), while 

the degree of mean spillover layer shows a little upward trend.  

          In this empirical study, we set the lag order M = 10, which corresponds to the 10- day 

VaR required by the Bank for International Settlements.  The degree of each layer when the 

lag order M = 10 is at a high level and relatively stable, and the networks at this lag order can 

fully reflect the past information (Wang et al. 2021 (b)).  

          To visualize the multilayer networks, Fig. 2 illustrate a snapshot of multilayer 

information spillover networks (mean spillover effects, volatility spillover effects, and extreme 

risk spillover effects) when M = 10.  

 

         Fig 2. A snapshot of multilayer information spillover networks of GCC countries  

Note: The GCC countries include Sultanate of Oman, United Arab Emirates, State of Qatar, Kingdom of Bahrain, 

and State of Kuwait over the period from June 30, 2006, to September 9, 2021. The first layer (from up to down) 

corresponds to mean spillover, the second spillover corresponds to the volatility spillover layer and the third layer 

to the extreme risk spillover layer. 

         Fig. 2 demonstrates that the connectedness of oil price shocks and GCC banking sectors 

at each layer is not consistent. For example, oil supply shocks (green cercle at the left side) 

have strong connectedness with GCC banking sectors on volatility and extreme risk spillover 
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layers, but lower connectedness with GCC banking sectors on mean spillover layer. Also, risk 

shocks have weak connectedness with GCC banking sectors on extreme risk spillover layer, 

but strong on mean and volatility spillover layers. 

          Fig. 3 illustrates the dynamic degree of each layer in time varying multilayer information 

spillover networks.  

 

Fig 3. Dynamic degree of each layer in time-varying multilayer information spillover networks. 

          From Fig.3, we notice that the general trend of the degrees among the three layers is 

relatively consistent. When the degree of a layer increased and reached the peak, the degrees 

of other layers changed almost synchronously. For example, in the periods of 2008-2010 and 

the 2015- 2016, suggesting that the increased connectedness and risk transmission among oil 

shocks and banking sectors is consistent. However, during the period from 2014 to 2015, the 

peaks of the degree on the three layers show nonsynchronous, in which volatility spillover layer 

first reached the peak, followed by extreme risk and mean spillover layers. During the COVID-

19 pandemic period, the peaks of the degree on the three layers show unsynchronized, in which 

extreme risk spillover layer first reached the peak, followed by volatility and mean spillover 

layers. This finding implies that extreme risk spillover layer followed by volatility spillover 

layer can offer early signals of risk transmission among oil shocks and banking sectors. 

          In the next step, we investigate the rang correlation (Spearman’s correlation coefficients) 

between dynamic degree series of three layers (Fig. 4) 
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Fig 4. Spearman’s correlation coefficients between three different layers 

    Fig. 4 shows the rank correlations between the three layers at different lag orders. We note 

that (Ⅰ) the rank correlation between volatility spillover layer and extreme risk spillover layer 

is mostly negative (Ⅱ) the correlation between the mean r layer and extreme risk spillover layer 

changes inversely across the lag orders. Fig. 5 illustrate the dynamic Spearman’s correlation 

between the three layers. 

 

Fig 5. Dynamic Spearman’s correlation coefficients between three different layers 

Fig. 5 demonstrate the dynamic rank correlations between the three layers based on GCC 

banking sectors in time-varying multilayer information spillover networks. The dynamic 

correlations vary with time, but in most of the period the correlations fall between −0.2 and 0.8. 

This finding indicates that there is a time varying correlation between the different layers, and 

the overall correlation is large. 
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4.2. Results for uniqueness measures 

In this part, we introduce unique edges to describe the uniqueness among three layers. The 

unique edges on layer α mean the edges only exist on layer α rather than on other layers. Fig.6 

presents the number of unique edges on each layer under different lag orders 

 

Fig 6. The number of unique edges on each layer in multilayer spillover networks as functions 

of lag order M. 

          Fig. 6 shows that the trend of the number of unique edges on each layer at different lags 

order is different than the trend on the corresponding layer. Also, we notice than t the number 

of unique edges of each layer tends to be stable when M ≥ 20. Fig.7 illustrate the dynamic 

number of unique edges on each layer. 

 

Fig 7. Dynamic number of unique edges on each layer in time-varying multilayer information 

spillover networks. 
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From figure 7, we note that in most of the time, the extreme risk spillover layer captures the 

largest number of unique edges, followed by the volatility and the mean spillover layers. Fig.8 

illustrate the number of unique edges of each agent on multilayer information spillover 

networks as functions of lag order M. 

    

    

 

Fig 8. The number of unique edges of each agent on multilayer information spillover networks 

as functions of lag order M. 

          From Fig 8. note that the unique edges of GCC banking sectors on each layer are different 

and change with the lag order.  Also, Bahrain banking sector have a large number of unique 

edges (i.e., the high connectedness and risk transmission with oil price shocks) on the extreme 

risk layer across most of lag orders. Fig. 9 illustrates the evolution for the number of unique 

edges of the GCC banking sectors on each layer. 

Mean spillover layer Volatility spillover layer 

Extreme risk spillover layer 
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Fig 9. Dynamic evolution for the number of unique edges of agents in time-varying multilayer 

information spillover networks. 

From Fig. 9, we notice that the dynamic patterns of unique edges on three layers also show the 

nonsynchronous effect during the crisis period. For example, we observe a significant increase 

in the number of unique edges on extreme risk spillover and volatility spillover layers happened 

during COVID-19 pandemic period (2020-2021). We note also a significant increase in the 

number of unique edges in mean spillover layer in the case of risk shocks happening during the 

oil crisis period 2014-2016. 

4.3. Results for overlap measures 

          In this section, we consider the non-unique edges of GCC banking sectors through the 

projection network of multilayer information spillover. Fig 10 measure the average edge 

overlap of multilayer information spillover networks under different lag orders. 

Extreme risk spillover layer 
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Fig 10. Average edge overlap of multilayer information spillover networks 

Fig. 10 shows that the average edge overlap increases when the lag order M is greater than 5, 

and then is decreasing when M ≥ 27. The average edge overlap is in a stable state when 23 ≤ 

M ≤ 27. Fig. 11 illustrates the dynamic average edge overlap of multilayer information 

spillover networks. 

 

Fig 11. Dynamic average edge overlap of multilayer information spillover networks 

From Fig 11, we note that the average edge overlap is relatively low and less than 2, indicating 

that (i) on average each edge will not simultaneously appear on two layers and (ii) each 

information spillover layer has a complementary effect. Fig. 12 illustrate the overlapping 

degree of GCC banking sectors at different lag orders. 
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Fig 12. The overlapping degree of each agent in multilayer spillover networks as functions of 

lag order M. 

Fig. 12 shows that Kuwait and UAE are highly connected with demand shocks because their 

overlapping degrees are large. Fig. 13 demonstrate the dynamic overlapping degrees of GCC 

banking sectors and oil price shocks in time-varying multilayer information spillover networks. 

Finally, Fig. 15 illustrates the time-varying participation coefficients of different GCC banking 

sectors. The higher the participation coefficient is, the more homogeneous the distribution of 

banking sector’ activity is among layers. 
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Fig 13. Dynamic overlapping degrees of agents in time-varying multilayer information 

spillover networks. 

 

Fig 14. The participation coefficient of each agent in multilayer spillover networks as functions 

of lag order M. 

 

 

Fig 15. Dynamic participation coefficient of agents in time-varying multilayer information 

spillover networks. 
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5. Conclusion 

          In this paper, we investigated the connectedness and risk transmission among oil shocks 

and banking sectors in the GCC economies over the period from June 30, 2006, to September 

9, 2021. We used the multilayer information spillover networks to consider mean and volatility 

spillover effects, and extreme risk spillover effects between oil price shocks and GCC banking 

sectors. We used multilayer measures to examine the connectedness between oil price shocks 

and GCC banking sectors. 

          The empirical results show that (Ⅰ)The peak degree on each layer of multilayer 

information spillover networks mostly has a synchronization effect, however, there was a 

significant asynchronous effect during crisis times and COVID-19 pandemic. (Ⅱ) The pattern 

of the unique edge is different than the pattern of the degree, suggesting that the increasing 

connection between GCC banking sectors and oil price shocks is mainly attributed to the rise 

of similar edges. (Ⅲ) a significant increase in the number of unique edges on extreme risk 

spillover and volatility spillover layers happened during COVID-19 pandemic period (2020-

2021). (Ⅳ) The average edge overlap is lower than 2 on average, so the information obtained 

by the network is one-sided no matter which layer is considered separately. This finding is 

similar to the finding of Wang et al. (2020). 

          Overall, these findings are of great importance to investors, policymakers, and market 

regulators in understanding the relationship and risk transmission between the oil market and 

banking sectors. A more informed understanding of the impact of the oil shocks on the banking 

sectors may help reveal promising domains for regional portfolio diversification, and trading 

and hedging strategies, enabling investors to make sound investment decisions. It would also 

help policymakers to regulate the banking sector more effectively and adopt the right policy 

measures to safeguard and maintain sound and stable financial systems. 
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