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Abstract  

 
In this paper, we study the causal effect of COVID-19 related reduction in mobility and economic 
activity on environment. First using spatial and temporal variation in curfews in a difference-in-
differences setup and second using a regression discontinuity design, we show that ambient air 
quality improved following travel restrictions, public place closures and business shutdowns. Our 
results confirm that economic activity induces substantial negative consequences on environment 
and public health and highlight the need for formulating environmentally oriented strategies that 
harmonize economic, public health and environmental interests.  
 
Keywords:  Covid-19, environment, air quality 
 
JEL Classifications: Q5 

 

 

 ملخص
 

وس كورونا (كوف�د ي الناتج عن جائحة ف�ي ي هذە الدراسة نبحث التأث�ي السبئب
) ع� خفض الحراك والنشاط الاقتصادي. 19-�ف

ي حالات الحظر �ف 
ي �ف

ي والزماىف
، باستخدام التباين المكاىف

ً
ا، باستخدام تصم�م انحدار  أو� س�اق اختلاف الاختلافات، وثان��

)، اتضح تحسن نوع�ة الهواء المح�ط بعد فرض قيود السفر، و�غلاق الأما�ن العامة، و�غلاق الأعمال. وتؤكد RDDالإنقطاع (
كما أنه �سلط الضوء ع� نتائج البحث ما يتسبب به النشاط الاقتصادي من عواقب سلب�ة وخ�مة ع� البيئة والصحة العامة،  

ن مصالح الاقتصاد والصحة العامة والبيئة.  ات�ج�ات مراع�ة للبيئة توائم بني  الحاجة إ� ص�اغة اس�ت
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1. Introduction 
There is now a consensus that the COVID-19 pandemic represents one of the largest economic 
shocks to world economies in recent decades. Negative effects of the epidemic have been 
documented on a wide array of outcomes ranging from income losses, rising unemployment, 
declining consumption to mental health deprivations and increased domestic violence (see Baker 
et al. 2020; Coibon et al. 2020; Horvat et al. 2020; Altindag et al., 2020; Erten et al., 2021). Despite 
all the economic, social and health related negative consequences, COVID-19 offers an opportunity 
to causally identify and quantify the effect of economic activity on environment. In particular, due 
the lockdowns, it might be expected to see improvements in the level of greenhouse gas emissions, 
air quality and surface water quality. Although, the impacts would be temporary and are expected 
to return to initial levels once the mobility restrictions are revoked, these unanticipated changes in 
the economic activity induced by the pandemic provide a quasi-experimental setup to examine the 
effects of the human-induced environmental changes. Studying the environmental consequences 
of the decline in economic activity and civilian mobility is invaluable for economic, public health 
and environmental policy makers in formulating environmentally oriented strategies that 
harmonize economic, public health and environmental interests. In this study we causally examine 
the effect of the reduced mobility and economic activity on environment. 
 
Quantifying the causal association between economic activity and air quality has a particular 
importance for the countries in the MENA region. This region has the second highest air pollution 
levels in the world and according to the World Health Organization (WHO) air pollution levels are 
by 4-5 times in most of the MENA cities (WorldBank, 2020), and yet air pollution in the region is 
currently understudied (Barkley et al., 2017). The economic costs of the health effects from air 
pollution include premature deaths and people suffering from respiratory and cardiovascular 
diseases, among many others and reduced labor productivity. Therefore, it is of academic and 
policy concern to examine the effects of economic activity on air pollution levels and incentivize 
inclusion of green and sustainable practices in post-COVID-19 era.  
 
The existing evidence on the effect of lockdowns on air quality is not conclusive yet.  He et al. 
(2020), Brodeur et al. (2020) show improvements in air quality in China and US, respectively, 
whereas Almond et al. (2020) shows that COVID-19 had ambiguous impacts and might even 
decrease air quality in China. In addition to these country specific studies, Lenzen et al. (2020), 
Venter et al. (2020), Dang and Trinh (2021) provide global estimates of improvements in air 
quality. Our results contribute to this growing literature by particularly providing evidence from 
MENA region. 
 
Due to high population growth rates and rapid urbanization, water demand has been increasing 
rapidly in the MENA region; and overexploitation of surface and ground water, uncontrolled 
discharge of domestic and industrial wastewater, pesticides and fertilizer-derived plant nutrients 
into the water resources contributes to water pollution exacerbate the already alarming water stress 
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in the region. Future development scenarios are expected to further aggravate these challenges, 
especially given that MENA is one of the regions that is most vulnerable to the impacts of climate 
change (IPCC, 2013). As such, it is crucial to study the effects of human induced changes in 
pollutants on water pollution and the COVID-19 slowdown provides an unintended controlled 
experiment to do so. The current evidence on the subject is sparse. Yunus et al. (2020) using 
satellite data and Cherif et al. (2020) using water surface temperature data, document 
improvements in surface water quality and coastal water quality. Our study add to this literature by 
providing evidence on water quality using complete set of real time water quality measures 
including dissolved oxygen level, pH, temperature, concentrations of BOD, Cd, Hg, Fe and Mn, 
chloride, particulate matter (turbidity), hardness etc. 
 
As a populous and emerging market, Turkey is among the countries that are hit hardest 
economically by the pandemic and among the one with the highest case numbers. As of December 
2020, Turkey has the 9th highest case number with over 2.9 million cases; 1,6 million recoveries 
and 29.696 deaths.3,4 Turkey provides a unique setting to study the effect of COVID 19 pandemic 
on environment, as it is one of the fastest countries to impose measures and tight restrictions against 
the epidemic. After the first official COVID-19 case on March 10, 2020 and first death on March 
15, 2020 are reported, on March 16, 2020, the Turkish government closed schools until further 
notice. Starting on March 15, 2020, public places such as malls, bars, restaurants, cafes, theatres, 
cinemas, and hairdressers were gradually closed. Operating times and capacities of supermarkets 
and groceries were regulated. Moreover, partial curfews were imposed for population over age of 
65 on March 22nd, and for population under age of 20 on April 4th. Since these precautions did not 
provide the desired decline in case numbers general curfews are imposed in 31 provinces on 
weekends between April 11th and May 3rd, in 23 provinces between May 9th and May 10th, in 15 
provinces between May 16th and May 19th, in 81 provinces between May 23rd and May 26th and 
finally in 15 provinces between 30 and 31st May. This spatial and temporal variation in curfews 
provide quasi-experimental setup for studying the effect of epidemic and related restrictions on air 
and surface water quality.   
 
We conduct our empirical analysis using two datasets. First, air quality data comes from the Turkish 
Ministry of Environment and Urbanization Air Quality Monitoring Stations. Our second data 
source is on water quality data from Water Quality Stations. Using these datasets, we identify and 
quantify the environmental effects of declining mobility and economy activity first by employing 
a difference-in-differences design, where we utilize the temporal and provincial variation in 
curfews and the length of curfews. Second, we carry out a Regression Discontinuity (RD) design 
and observe the immediate impact of the spread of the pandemic and policy measures passed to 
contain it. 
 

                                                            
3 Johns Hopkins Coronavirus Resource Center (CRC) 
4 Turkish Ministry of Health 
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Our results demonstrate that ambient air quality has improved following the announcement of first 
COVID-19 case and related precautions announced against it in Turkey. In particular, a reduction 
in mobility and economic activity due to in-city and intercity travel restrictions, curfews, school 
and business (both private sector and public sector) closures, public place closures (malls, bars, 
restaurants, cafes, theatres, cinemas, hairdressers, and etc.) is the direct mechanism explaining the 
improvements in air pollutant concentrations in Turkey. We also provide some suggestive evidence 
on the improvements of water quality indicators during this reduced mobility period. Our results 
quantify the human induced environmental pollution and magnify the need for designing policy 
alternatives that harmonizes sustainable growth objectives with public health and environmental 
concerns.  
 
The rest of the paper proceeds as follows. The next section describes data sources and summarizes 
the data. Section 3 explains empirical framework. Section 4 lays out the results and Section 5 
concludes.   
 
2. Data 
In this study we employ two sets of data source. First, we use air quality data from the Turkish 
Ministry of Environment and Urbanization Air Quality Monitoring Stations. This data provides 
several air quality measures including PM2.5 and PM10, inhalable particles with diameters that are 
generally 2.5 and 10 micrometers, respectively and NO2 which primarily gets in the air from 
emissions from cars, trucks and buses, power plants, and off-road equipment. We also examine the 
concentration of SO2, CO and O3.5 Additionally, from these seven pollutants we also create an 
aggregate air quality index using principal component analysis. Second data is from Water Quality 
Stations and include water quality measures such as dissolved oxygen level (DO), pH, temperature, 
concentrations of BOD, Cd, Hg, Fe and Mn, chloride, particulate matter (turbidity), and hardness. 
 
We have air quality indicators from 314 stations in 81 provinces in Turkey between 01.01.2018 
and 27.07.2021. Table 1 provides summary statistics of daily concentrations of air pollutants in 
314 stations. It reveals that there is too much daily variation which can be attributed both to 
seasonality characteristic of the air pollution and also province specific differences such as 
urbanization, industry, population, weather etc. This variation is especially substantial for PM2.5 

and CO concentrations. Therefore, in our estimation framework, we have incorporated controls for 
seasonality and time-invariant city characteristics to account for such potential differences. 
 
Table 2 provides city level descriptive statistics for years 2018, 2019 and 2020, respectively. It is 
hard to deduct a single trend across years- while for some pollutants there is an improvement 
between 2018 and 2020, for others concentrations display an increasing trend. According to 
WHO’s guidelines for air pollution, interim targets for PM10 and PM2.5 annual concentrations are 

                                                            
5 Definition and principal sources of outdoor air pollutants are given in Appendix. 
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20 μg/m3 and 10 μg/m3, respectively. According to Table 2, both pollutants are above the target 
concentrations. The WHO estimates that reducing annual average PM2.5 concentrations from levels 
of 35 μg/m3, common in many developing cities, to the WHO guideline level of 10 μg/m3 can 
reduce air pollution-related deaths by around 15%. For NO2 WHO’s interim annual target is 40 
μg/m3; in average through 2018-2020, NO2 concentrations in Turkey satisfies this limit. 
 
Figures 1 (a)-(f) plot the time series graphs of the daily air pollutant concentrations to have a general 
overview of the effect of COVID-19 pandemic on pollution patterns in Turkey. Figures reveal the 
expected seasonal characteristics of air pollutants -displaying elevated levels in winter months and 
low levels in summer months. An exception in this case is ozone, which is found in higher 
concentrations in longer days and higher air temperatures (Jez, 2009). Higher levels of air pollution 
in winter months are associated with higher energy use (biomass burning) and increased 
atmospheric stability and slow air movement which trap pollutants and lead them to remain in air 
for much longer and be breathed in at a higher rate.  
 
Figures 3 further displays the time series graphs of the average water quality indicators and suggest 
a similar improvement in water pollution levels.6 Based on the monthly averages total organic 
carbon, FE, Mn concentrations and water turbidity there is a temporary improvement during the 
lockdown period between March and June of 2020.  
 
3. Empirical framework 
In this section, we provide a detailed description of our estimation framework. For the causal 
identification of the potential pollution effects of the pandemic, we explore the length of curfews 
as an exogenous shock to air quality and employ a difference-indifferences design. In this effect, 
we exploit the temporal and provincial variation in the implementation and the length of the 
curfews to causally quantify the environmental effects of declining mobility and economic activity. 
Our difference-in-differences analysis assumes that the COVID-19 had disproportionately larger 
impact on air quality in provinces with curfews and longer curfews than provinces without the 
curfews. Moreover, the validity of the difference-in-differences estimation relies on the parallel 
trend assumption which suggests that the change in concentration of the pollutants over time would 
have been similar in all provinces if there had not been pandemic related curfews. Later, we test 
the robustness of our main difference-in-differences specification by relaxing this parallel trend 
assumption through allowing for provinces to differ in terms of time trends (Angrist and Pischke, 
2015). More specifically, we estimate the following differences-in differences equation for 
province p in day t:  
 

𝑌𝑌𝑝𝑝𝑝𝑝 =  𝛼𝛼 +  𝛽𝛽 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝 +  𝜃𝜃𝑡𝑡 +  𝜗𝜗𝑝𝑝 +  δs +  𝛿𝛿𝛿𝛿𝑝𝑝𝑝𝑝 +  𝜀𝜀𝑝𝑝𝑝𝑝 

                                                            
6 Since the number of observations in water quality station data is not enough for empirical analysis yet, only 
descriptive analysis performed on water quality for this version of the paper.  

https://link.springer.com/article/10.1007/s10661-017-6319-2#ref-CR6
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where 𝑌𝑌𝑝𝑝𝑝𝑝 denotes the environmental quality measures of province p at day t. We measure the air 
quality using several indicators including PM2.5 and PM10, inhalable particles, with diameters that 
are generally 2.5 and 10 micrometers, respectively, and NO2 which primarily gets in the air from 
emissions from cars, trucks and buses, power plants, and off-road equipment. We also examine the 
concentration of SO2, CO and O3. Finally, we use a combined measure of air quality index (AQI) 
to incorporate all different types of air quality measures in one indicator. Curfew city is an indicator 
which takes a value of 1 if a province was under the mandated curfew and 0 for cities which were 
not affected by the curfews. Curfew Days is a dummy variable taking a value of 1 on the curfew 
days and 0 otherwise. ϑp is province fixed effects, controlling for the fact that provinces might be 
systematically different from each other.  θt is day fixed effects and δs is station fixed effects. Xpt 
is a vector of time-varying province-level control variables that might be correlated with pollution 
such as daily temperature and rainfall. Following Bertrand, Duflo and Mullainathan (2004), the 
standard errors are clustered by province to account for correlations in outcomes between 
individuals residing in the same province over time. Finally, 𝛽𝛽 is the main coefficient of interest in 
this difference-in-differences framework.  
 
In addition to the difference-in-differences analysis, we further supplement our analysis with a 
Regression Continuity (RD) Design through exploring the clear cut-off day in the implementation 
of the curfews. Particularly, we estimate the following basic sharp RD specification: 
 

 Yi = α + βti + f(xi) + εi  (1) 
 ∀xi ∈ (c − h, c + h) 

 
where Yi is the air quality indicator for province i. As postulated in Cattaneo et al. (2019), we 
correct for the bias and variance in the reported RD specification. More specifically, we exploit the 
exact dates in the implementation of the curfew rules in the RD design, with data points after 
COVID-19 reached to Turkey (16 March 2020) being assigned to the treatment group. xi is the 
running variable (days in our setting), and h is the bandwidth around the cut-off point c (i.e., March 
16th). We follow the bandwidth selection procedures provided by Cattaneo et al. (2019) to obtain 
the data-driven bandwidths for our RD analysis. In particular, we employ the MSE-optimal and 
CER-optimal bandwidths by allowing for common and different bandwidths in each side of the 
cut-off. The use of various bandwidth selection procedures enables us to test the robustness of our 
results and ensure that our results are not sensitive to the chosen bandwidth. The control function 
f(xi) is a continuous n-order polynomial function of the running variable on each side of the cut-off 
c. Following Gelman and Imbens (2017) and Imbens and Lemieux (2008), we use local linear 
regressions in our main specification to avoid the problem of over fitting. We further test the 
robustness of our results with the quadratic polynomial of the running variable. Finally, we use the 
triangular kernel function in our estimations as suggested in Cattaneo et al. (2019). 
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4. Empirical results 
Difference-in-Differences Estimation 
We begin by estimating difference-in-differences analysis through exploring spatial and temporal 
variation in curfews. Results summarized in Table 3 demonstrate that a reduction in mobility 
through curfews led to an improvement in air quality, with provinces with longer curfews 
experiencing the largest decline in air quality. We further test the robustness of our results through 
employing different specifications including combining station, province, date, day and month 
controls. Only, exception to our finding is surface level ozone concentration and SO2. 
 
Identifying assumption in this difference-in-differences setup is that in the absence of COVID-19 
related reduction in mobility and economic activity, changes in ambient air quality would have 
been the same in curfew cities and others. However, this assumption might fail if province-by-time 
variation in curfew restrictions is related to other province-specific changes that are related to air 
pollutant concentrations. We test our identifying assumption with two different specification 
checks. First, following Angrist and Pischke (2015), we include province specific time trends and 
relax the parallel trend assumption in order to flexibly deal with possible differences across 
provinces during the time period analyzed. Table 4 shows the results for this specification. The 
results continue to show that on curfew dates in curfew cities, in which human mobility and 
economic activity was further restricted, air pollutant concentrations are statistically significantly 
lower and ambient air quality is significantly higher.  
 
In addition, we perform a placebo experiment using the time period before COVID-19 and its 
restrictions. Particularly, we replicate the analysis in Table 3, but only include the data before June 
1, 2019, i.e., the period long before the first of official case of COVID-19 is reported in Wuhan, 
China on December 31, 2019. We use the province curfew identifiers in 2020, and assign same 
curfew days to provinces in 2019. For example, a province that had a curfew on April, 11, 2020 
receives a placebo curfew at April, 11, 2019. Here, the idea is that since there was not an actual 
curfew or official mobility restrictions or individual mobility hesitancy during that time period, 
coefficient of interest in difference-in-differences estimation should be statistically insignificant.  
Table 5 reports these results. For all of the air pollutants, the coefficient of placebo curfews are 
insignificant indicating that placebo curfews did not have disproportionately larger impact on 
provinces with placebo curfews and the change in the concentration of the pollutants over time was 
the same in all provinces. This exercise bolsters the conclusions derived from Table 3 and shows 
that underlying province specific differences or equal-trend assumption do not drive our results. 
 
Regression Discontinuity Design 
As described in the estimation framework section, we exploit the discrete and abrupt change in the 
mobility restrictions dictated by the pandemic to provide causal evidence on the effect of economic 
activity on air pollution. As it is customary for the RD analysis, we first begin with the graphical 
illustration of the RD design in Figure 2 (a)-(f).  Our cut-of date is March 16, 2020, date at which 



8 
 

the nationwide restrictions and lockdowns were first imposed. These pollutant-specific figures are 
generated using the data-driven optimal number of bins procedures provided by Cattaneo et al. 
(2019). We also use polynomial of degree 1 for the running variable in these RD figures. These 
figures visually demonstrate the significant and negative impact of COVID-19 related slowdowns 
on air pollutant concentrations. 
 
As discussed in detail in the identification strategy section, we present the robust RD estimates 
which are corrected for the bias and variance, as suggested in Cattaneo et al. (2019). We allow for 
both linear and quadratic polynomials in running variable for the possibility of the pre-trends and 
non-linearity in our data. We further present the RD results with two data-driven bandwidth 
selection procedures summarized in Cattaneo et al. (2019), to ensure that our results are not driven 
by the choice of the bandwidth, or polynomial degree of the running variable. We find that the RD 
estimates are robust to a different bandwidth selection procedures and polynomial choice for the 
running variable. 
 
Panel A of Table 6 presents the RD estimates with MSE-optimal bandwidth selection, whereas 
Panel B summarizes the RD results with CER-optimal bandwidth with the associated bandwidths 
used in each regression. Similar to the difference in differences estimations, the RD framework 
also shows that air pollutant concentrations significantly declined following the mobility 
restrictions, except for SO2 and O3 concentrations.  
 
Having shown that pandemic improved ambient air quality, we further provide additional evidence 
on the robustness of our main results and formally test their validity. In this pursuit, we performed 
a battery of validity checks as suggested in Cattaneo et al. (2019) to ensure that our data exhibits 
no other jumps before and after the restrictions took place, and that our findings are not sensitive 
to observations near the cut-off. Our results are robust to varying degrees of polynomial of the 
running variable, as shown in Table 6 Columns 7-12 in each panel. We conclude therefore that our 
results are not sensitive to the selection of the bandwidth procedures or a degree of polynomials of 
the running variable. 
 
We further perform a placebo experiment, similar to the placebo experiment in difference in 
differences setup, in which we set the cut-off point to March 16, 2019, exactly a year prior to the 
actual curfew. In table 7, none of the point estimates in these alternative cut-offs are statistically 
significant bolstering our confidence that the estimated effects are indeed due to COVID-19 
pandemic and subsequent mobility restrictions rather than other confounding factors, jumps or non-
linearity in the data.    
 
5. Conclusion 
Better understanding of the impact of economic activities on environment and climate change is a 
stepping stone to promote green alternatives that minimizes risk to human health and 
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the environment without sacrificing economic efficiency. In such, the results of this study provide 
policy makers with invaluable information to develop environmentally sustainable economic 
development strategies.  
 
Our results show that ambient air quality was improved during COVID-19 related lockdowns and 
decreased economic activity. Particulate matter, CO, NO2, NOX concentrations statistically 
significantly declined, while O3 and SO2 concentrations remain unchanged. We also provide some 
suggestive evidence that surface water quality was also improved possibly due to mobility 
restrictions, air quality improvements and reduced industrial activity. 
 
In this regard, our results stress the human induced environmental impact and its indirect effect on 
human health and provide further empirical evidence supporting the need for governments to 
design sustainable economic policies that acknowledges the public health and environmental 
concerns. 
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Table 1. Daily Concentration of Air Pollutants  
 Number of 

Obs 
Mean Std. Dev. Min Max 

      
PM10 (µg/m³) 241,571 45.55 38.07 0 1591.74 
PM25µgm3 101,126 619,45 124708 .02 3.40e+07 
SO2 (µg/m³) 233,218 12,60 30.91 .03 3658.12 
CO (µg/m³) 111,540 1015.93 33334.51 .09 8695796 
NO2 (µg/m³) 184,693 31.55 25.79 0 594.76 
NOX (µg/m³) 180,814 58.97 77.96 .01 4396.95 
O3 (µg/m³) 130,820 45.015 30.67 .42 1002.74 

Notes: Table summarizes daily pollutant levels from 314 stations between 01 January 2018 and 27 July 2021.   
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Table 2. Annual Average Concentration of Air Pollutants in Cities 
Panel A: 2018 

 Variable Obs Mean Std. Dev. Min Max 
  PM10 (µg/m³)    77 50.38       18.66 18.22 129.38 
             PM2.5 (µg/m³)  43 24.28       11.96 11.78 86.46 
 SO2 (µg/m³)    79 13.46        9.47 4.623 51.61 
 CO (µg/m³)    42 1027.02     840.16  416.98 3954.34 
 NO2 (µg/m³)    52 28.99      12.56  6.72 68.02 
 NOX (µg/m³)    52 51.33      41.29 6.95 289.15 
 O3 (µg/m³)    49 43.51      15.41 14.87 78.89 

Panel A: 2019 
Variable Obs Mean Std. Dev. Min Max 

 PM10 (µg/m³)    77 46.77    17.06 13.24 136.38 
             PM2.5 (µg/m³)  46 22.39    8.25   6.12 53.55 
 SO2 (µg/m³)   78 12.88    8.94   3.35 57.99 
 CO (µg/m³)   44 735.07    240.43 282.89 1229.41 
 NO2 (µg/m³)   57 33.55    18.29 6.94 122.46 
 NOX (µg/m³)   57 53.37    28.64 13.19 184.42 
 O3 (µg/m³)   56 42.80    19.04  14.50    118.17 

Panel B: 2020 
 Variable Obs Mean     Std. Dev.  Min  Max 
 PM10 (µg/m³)    79 46.98    15.06            15.30 109.31 
             PM2.5 (µg/m³)  54 23.61    11.82 7.81 85.81 
 SO2 (µg/m³)    79 14.96    20.32 3.44 175.48 
 CO (µg/m³)      51 916.74     938.43 329.83 7034.91 
 NO2 (µg/m³)    62 33.50    14.00 8.93 66.73 
 NOX (µg/m³)    62 58.98    30.28 17.34 163.49 
 O3 (µg/m³)    61 39.87    15.15 9.54 69.26   
Notes: Table summarizes annual pollutant averages by city. 
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Table 3. Effect of Curfews on Air Pollutants: Difference-in-Differences Estimates 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

 AQI PM10 SO2 CO NO2 NOX O3 AQI PM10 SO2 CO NO2 NOX O3 

                              
 
Curfew City x -0.226 2.259 -0.041 91.647 -7.610*** -22.091*** 6.561** -0.155** -4.207** -3.160 18.075 -9.638*** -16.330*** 5.018** 
Curfew Days (0.138) (2.164) (2.317) (143.270) (2.572) (6.363) (2.993) (0.065) (1.642) (5.860) (75.043) (1.697) (4.858) (2.188) 

                
Province FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Date FE Yes Yes Yes Yes Yes Yes Yes No No No No No No No 
Station FE No No No No No No No Yes Yes Yes Yes Yes Yes Yes 
Day X Month FE No No No No No No No Yes Yes Yes Yes Yes Yes Yes 

                
Observations 10,824 81,242 77,848 38,207 59,012 59,137 45,571 10,824 81,242 77,848 38,207 59,012 59,137 45,571 
R-squared 0.323 0.385 0.347 0.104 0.373 0.278 0.331 0.570 0.478 0.632 0.158 0.655 0.574 0.542 
Notes: Regressions include province fixed effects, population and number of motor vehicles per 1000 population. Additionally, Columns 1-7 control for date fixed effects, Columns 8-14 control for 
station fixed effects, day, month and day x month fixed effects. AQI is the aggregate air quality index calculated by principal component analysis using 6 pollutants Robust standard errors clustered at 
the province level are in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Effect of Curfews on Air Pollutants: Difference in Difference Estimates -Without 
parallel trend assumption 

  (1) (2) (3) (4) (5) (6) (7) 

 AQI PM10 SO2 CO NO2 NOX O3 

                
Curfew City * Curfew Days -0.680*** -15.669*** -10.489 -378.270*** -15.444*** -46.711*** 15.631*** 

 (0.196) (2.033) (6.304) (44.641) (2.076) (6.951) (1.741) 

        
Province FE Yes Yes Yes Yes Yes Yes Yes 
Date FE Yes Yes Yes Yes Yes Yes Yes 
Station FE Yes Yes Yes Yes Yes Yes Yes 
Province Specific Time Trend Yes Yes Yes Yes Yes Yes Yes 

        
Observations 10,824 81,242 77,848 38,207 59,012 59,137 45,571 
R-squared 0.480 0.281 0.631 0.214 0.568 0.457 0.472 
Notes: Regressions include province fixed effects, date fixed effects, station fixed effects, province specific time trends, population and number 
of motor vehicles per 1000 population. AQI is the aggregate air quality index calculated by principal component analysis using 6 pollutants. 
Robust standard errors clustered at the province level are in parentheses *** p<0.01, ** p<0.05, * p<0.1 



16 
 

Table 5. Effect of Curfews on Air Pollutants: Placebo Experiment 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

 AQI PM10 SO2 CO NO2 NOX O3 AQI PM10 SO2 CO NO2 NOX O3 

                              
Placebo Curfew  -0.092 -2.035 -0.148 -34.968 -0.682 -3.383 -1.733 -0.067 -1.502 -0.130 -39.217 -0.335 -2.786 -1.293 

 (0.073) (1.322) (0.918) (28.943) (1.111) (3.107) (1.570) (0.063) (1.466) (0.883) (31.787) (0.864) (2.802) (1.426) 

               
Province FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Date FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Station FE Yes Yes Yes Yes Yes Yes Yes No No No No No No No 
Day and Month FE No No No No No No No Yes Yes Yes Yes Yes Yes Yes 

               
Observations 1,562 11,814 11,280 5,216 9,058 9,041 6,348 1,562 11,814 11,280 5,216 9,058 9,041 6,348 
R-squared 0.429 0.356 0.421 0.439 0.375 0.322 0.552 0.790 0.554 0.512 0.636 0.833 0.753 0.819 
Notes: Placebo curfew days creating by taking actual curfew dates one year back at 2019. Regressions include province fixed effects, population and number of motor vehicles per 1000 population. 
Additionally, Columns 1-6 control for date fixed effects, Columns 7-12 control for station fixed effects, day, month and day x month fixed effects. AQI is the aggregate air quality index calculated by 
principal component analysis using 6 pollutants Robust standard errors clustered at the province level are in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 6. Effect of COVID-19 Restrictions on Air Pollution: Regression Discontinuity Design 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 
 PANEL A: Bandwidth Selector: MSERD 

                                
Treatment -0.326*** -22.400*** -7.813** -1.980** -277.751*** -9.700*** -36.186*** 2.714 -0.232* -25.784*** -8.713** -1.703 -265.957*** -7.038* -29.317** 2.478 

 (0.124) (5.749) (3.061) (0.941) (61.621) (3.157) (10.739) (2.514) (0.139) (6.902) (3.644) (1.290) (76.438) (3.748) (11.859) (3.344) 

                 
Bandwidth Selector MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD 
Polynomial  1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 
Observations 18,048 153,023 60,346 149,928 68,974 114,201 114,675 81,460 18,048 153,023 60,346 149,928 68,974 114,201 114,675 81,460 

                 
 PANEL B: Bandwidth Selector: CERRD 

 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 

                 

                               
Treatment -0.225* -22.494*** -6.564** -1.234 -278.481*** -8.470** -31.402*** 2.506 -0.117 -23.178*** -6.918* -0.568 -232.516*** -5.968 -23.429* 2.437 

 (0.134) (6.148) (3.323) (1.030) (66.271) (3.400) (11.622) (2.770) (0.151) (7.580) (3.955) (1.374) (83.941) (4.167) (13.023) (3.745) 

                 
Bandwidth Selector CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD 
Polynomial  1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

 18,048 153,023 60,346 149,928 68,974 114,201 114,675 81,460 18,048 153,023 60,346 149,928 68,974 114,201 114,675 81,460 
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Table 7. Regression Discontinuity Design – Placebo Exercise (2018-2019) 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 
 PANEL B: Bandwidth Selector: MSERD 

                                
Treatment 0.134 0.456 3.748 0.262 -16.199 1.736 9.117 1.304 0.220 3.943 5.001 2.172 47.774 2.205 10.211 -0.761 

 (0.241) (6.885) (4.167) (1.513) (78.735) (5.561) (15.699) (3.220) (0.261) (8.070) (4.626) (1.665) (94.460) (5.905) (16.709) (3.915) 

                 
Bandwidth Selector MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD MSERD 
Polynomial  1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

Observations 
8,705 83,730 28,213 83,940 35,278 62,968 63,178 42,648 8,705 83,730 28,213 83,940 35,278 62,968 63,178 42,648 

                 
 PANEL B: Bandwidth Selector: CERRD 

 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 AQI PM10 PM2.5 SO2 CO NO2 NOX O3 

                 

                               
Treatment 0.201 0.587 2.650 0.157 2.610 4.421 10.659 -0.032 0.357 2.623 5.799 2.411 85.929 6.553 19.031 -2.447 

 (0.225) (6.133) (3.811) (1.379) (71.360) (5.146) (14.667) (2.881) (0.252) (8.755) (4.333) (1.682) (96.038) (5.687) (15.774) (4.076) 

                 
Bandwidth Selector CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD CERRD 
Polynomial  1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 
Observations 8,705 83,730 28,213 83,940 35,278 62,968 63,178 42,648 8,705 83,730 28,213 83,940 35,278 62,968 63,178 42,648 

 



19 
 

Figure 1. Daily Air Pollutant Concentrations 

a) PM10                                   b) PM2.5 

      
c) SO2      d) NO2 

    
d) O3     e) NOX 
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Figure 2. Regression Discontinuity Plots (Air Quality Indicators) 

a) AQI      b)PM10

   
c) NO2      d) NOX 

         
e) CO       f) PM2.5 
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Figure 3. Water Quality Indicators 

a) Total Organic Carbon 

 

b) Turbidity 
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Appendix 

Primary and secondary air pollutants 
Sulfur dioxide, oxides of nitrogen, carbon monoxide, volatile organic compounds, and 
carbonaceous and noncarbonaceous particles are defined as primary air pollutants and they are 
emitted from road transport, stationary combustion sources and other natural sources. Secondary 
pollutants, however, formed during chemical reactions of primary pollutants in the atmosphere and 
they include ozone, oxides of nitrogen and secondary particulate matter. 

 
Particulate Matter  
PM2.5, PM10 are inhalable particles, with diameters that are generally 2.5 micrometers and 10 
micrometers and smaller, respectively. These are either emitted directly from a source, such as 
construction sites, unpaved roads, fields, smokestacks or fire or formed in the atmosphere as a 
result of complex reactions of chemicals such as sulfur dioxide and nitrogen oxides.  

 
Ozone 
There are two types of ozone. Stratospheric ozone occurs naturally in the upper atmosphere and 
forms a protective layer against harmful ultraviolet rays. Tropospheric ozone (ground level ozone) 
is a harmful air pollutant and is the one analyzed in this paper. This is formed by chemical reactions 
between oxides of nitrogen (NOx) and volatile organic compounds (VOC) in the presence of 
sunlight. 
 
Sulfur Dioxide 
The main source of sulfur dioxide (SO2) is the combustion of fossil fuels containing sulfur. In 
developed countries much of the sulfur is removed from motor fuels in the refining process and 
from stack gases prior to emission, in less developed countries, however, burning of coal and the 
use of fuel oils and automotive diesel with a higher sulfur content are major sources of sulfur 
dioxide. (WHO, 2005). 
 
Oxides of nitrogen 
The main source of oxides of nitrogen (NO2, NOX) is the combustion of fossil fuels. Coal is the 
most prevalent source in this context, as oil and gas contain much lower levels of nitrogen. In 
addition to this main source, oxides of nitrogen are also formed during high-temperature 
combustion from the reaction of atmospheric nitrogen and oxygen. Road traffic and electricity 
generation are the predominant sources of these gases.  

 
Carbon monoxide 
While carbon dioxide is formed during complete combustion, carbon monoxide is emitted through 
incomplete combustion of carbon-containing fuels. The major source of this emission is through 
the combustion of petrol in road vehicles. 
 


