ERF WORKING PAPERS SERIES

Wage Inequality Dynamics in Turkey

Ozan Bakis and Sezgin Polat

Working Paper No. 1509 November 2021

WAGE INEQUALITY DYNAMICS IN TURKEY

Ozan Bakis¹ and Sezgin Polat²

Working Paper No. 1509

November 2021

We would like to thank Insan Tunali, Mustafa Ulus and Paul Makdissi for their valuable and helpful comments. All remaining errors are the authors' responsibility. We would also thank the Scientific and Technological Research Council of Turkey (TUBITAK) for their financial support for the project, entitled Türkiye'de Asgari Ücretlerin İşgücü Piyasası Etkileri, 2005-2018 (grant 1001, no: 118K236). Sezgin Polat gratefully acknowledges the support of Galatasaray University Research Fund (no:19.103.001).

Send correspondence to: Ozan Bakis Bahçeşehir University ozan.bakis@eas.bau.edu.tr

¹ Bahçeşehir University, Department of Economics. BETAM.

² Galatasaray University, Department of Economics. GIAM. E-mail: spolat@gsu.edu.tr

First published in 2021 by The Economic Research Forum (ERF) 21 Al-Sad Al-Aaly Street Dokki, Giza Egypt www.erf.org.eg

Copyright © The Economic Research Forum, 2021

All rights reserved. No part of this publication may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without permission in writing from the publisher.

The findings, interpretations and conclusions expressed in this publication are entirely those of the author(s) and should not be attributed to the Economic Research Forum, members of its Board of Trustees, or its donors.

Abstract

This study aims to examine the evolution of wage inequality in Turkey between 2002 and 2019 using Household Labor Force Surveys. We find a significant decline in wage inequality over the period analyzed, which can be explained by a combination of (i) minimum wage hikes (2004 and 2016), (ii) a stable aggregate demand curve, and (iii) relative stagnation of post-secondary graduate wages. The two minimum wage hikes led to real gains that were preserved over the years for lower wage earners and reduced the wage gap between upper and lower percentiles. The decomposition analysis based on DiNardo et al. (1996) shows that minimum wage hikes had a strong wage (price) effect over the wage distribution. This impact even spilled over for wage earners above the minimum wage. We argue that minimum wage adjustments replace the role of central wage bargaining in an emerging economy with many low qualified jobs and almost no labor market institutions. The stagnating real wages for the upper deciles contributed further to the reduction in inequality in recent years.

JEL Classifications: J23; J31; J38; C14. **Keywords**: Minimum wage, Wage inequality, Turkey, Decomposition, Wage dynamics

ملخص

تهدف هذه الدراسة إلى فحص تطور عدم المساواة في الأجور في تركيا بين عامي 2002 و2019 باستخدام مسوح القوى العاملة للأسر. وجدنا انخفاضًا كبيرًا في عدم المساواة في الأجور خلال الفترة التي تم تحليلها، والذي يمكن تفسيره بمزيج من (1) زيادات الحد الأدنى للأجور (2004 و2016)؛ (2) منحنى إجمالي الطلب المستقر؛ و(3) الركود النسبي من أجور الخريجين بعد الثانوية. أدت زيادتا الحد الأدنى للأجور إلى مكاسب حقيقية تم الحفاظ عليها على مر السنين لأصحاب الأجور المنخفضة وقلصت فجوة الأجور بين النسب المئوية الأعلى والأدنى. يوضح تحليل تقسيمات الأجور الذى يعتمد على ما قام به ديناردو وآخرون (1996) أن زيادات الحد الأدنى للأجور كان لها تأثير قوي في الأجور (التسعير) على توزيع الأجور. حتى أن هذا التأثير امتد إلى العاملين بأجر أعلى من المتوسط. نحن نجادل بأن تعديلات الحد الأدنى للأجور تحل محل دور المساومة المركزية الأجور في اقتصاد ناشئ به العديد من الوظائف ذات المؤهلات المنخفضة وغياب مؤسسات سوق العمل تقريبًا. وساهم ركود الأجور الحقيقية للفئات العشرية العليا في مزيد من الحد من عدم المساواة في الأجور أن هذا التأثير.

1. Introduction

The share of workers earning minimum wage or less in paid employment is very high in Turkey compared to less developed countries in EU such as Slovenia, Bulgaria, Romania and Greece. According to Eurostat data while share of workers earning earning less than 105 % of the minimum wage is about 8-15 % in these countries, it is about 41.65 %³ in Turkey in 2018.⁴ There are several factors that explain this unusually high share of low wage workers in Turkey. The first one is the structural transformation that took place in Turkish labor market during the last two decades. This transformation consists of a large transition from unpaid employment to paid employment in Turkey. The overall share of wage-earners in employment rose from 49.7 % in 2002 to 68.4 % in 2019. The figures for female workers are even more striking: from 36.9 % to 66.7 %. Also, younger generations who are more educated than their parents, depend heavily on wage employment. In such an economy where income inequality is already high and persistent, labor market rewards are crucial.

The second one is low education levels of workers. Despite several improvements in education policy ⁵, Turkey's labor market is still dominated by workers with limited schooling. In terms of educational endowment, 45% of workers had less than secondary education in 2019 while the mean years of schooling for wage earners barely exceeded 10 years, which is less than the required number of years for a high school diploma (see column 3 in Table 0). The third one is low unionization rate which results in weak collective bargaining. Because of these factors, almost half of Turkey's wage earners depend heavily on a floor wage or minimum wage adjustments.⁶ Therefore, institutional regulations governing wage bargaining have an extraordinary power in shaping wage dynamics in Turkey.

In the present study, we analyze wage inequality dynamics between 2002 and 2019. Turkey provides a unique case regarding wage inequality reduction in emerging countries, where institutional factors have a limited role and minimum wage adjustments account for much of the decrease in wage inequality. During this period, there were two major minimum wage hikes (28% in 2004 and 22% in 2016 in real terms), which reduced the gap between lower and upper segments of the wage distribution. The benevolent character of minimum wage hikes in reducing inequality is theoretically appealing, as there is no evidence that the increased wage bill had general equilibrium effects in either episode. In other words, when a minimum wage shock leads to real gains, a combination of price and quantity adjustments can be expected in the market. In this study, we do not deal with these macroeconomic general equilibrium effects following these wage (price)

³ Authors' calculation using Household Labor Force Survey, 2018.

⁴ See Figure 4 at https://ec.europa.eu/eurostat/statistics-explained/SEPDF/cache/1568.pdf.

⁵ Compulsory schooling increased to 8 years after the education system was reformed in 1997 while access to higher education has increased since 2006.

⁶ In this respect, political parties see minimum wage adjustments as a re-distributive policy. For a recent study, see [Kahveci and Pelek, 2021]. [Koand Visser, 2009] also argues that in elections years, institutional wage adjustments produced real gains.

shocks.⁷ Instead, our decomposition exercise uses counterfactuals effects and discards those general equilibrium effects.

We show that wage inequality is declining in last two decades. There are 3 complementary explanations. First, minimum wage hikes (2004 and 2016) increased mainly low wages so that there is a significant decrease in wage inequality in 2004 and 2016. More importantly, low wage workers succeeded to keep their real wage levels high levels in years following 2004 and 2016. Second, using Katz and Murphy (1992) framework, we show that one can explain observed changes in relative wages by assuming a stable demand curve and observed changes in relative supplies in the private sector in Turkey. However, public sector wage dynamics are different. Between 2002 and 2008 we cannot explain observed changes in relative wages by assuming a stable demand curve and observed changes in relative supplies. The demand curve must have shifted during this period. This implies that demographic groups whose relative supply is increasing see their demand increasing even more. Actually, the key explanation is wage policy followed by government in the public sector. Between 2004 and 2012 public sector wages increased more than private sector wages for post-secondary graduates. And third, wages of postsecondary graduates stagnate after 2012 for both public and private sector workers. Until 2012, only more educated workers in the public sector had relatively high wage growth, this was not the case for the private sector workers. After 2012 real wages of more educated workers stagnated for both public and private sector workers. This was not the case for low wage workers whose real wage levels continued to grow at non-negligible rates.

Our decomposition analysis based on [DiNardo et al.,1996] shows that minimum wage hikes had a strong wage (price) effect over the wage distribution. This impact even spilled over for wage earners above the minimum wage. A plausible explanation for these dynamics is that minimum wage policy replaces the role of central wage bargaining in Turkey with many unskilled workers and weak labor market institutions.

Our paper relates to two branches of literature. First, it is related to papers studying rise in wage inequality in Western countries (particularly US) in 1980s and 1990s. As a first step, the literature decomposes how much of inequality is due to changes in composition (composition effect) and how much is due to changes in wage structure (price effect). Then, the most interesting part is how to explain the second component, changes in wage structure (price effect). In the literature, several candidates emerged: skill-biased technical change, changes in international trade, outsourcing, cohort effects, changes in minimum wage. The standard approach to understand wage differences is to analyze how supply and demand varies over time. Several studies conclude that the shift in demand of skilled workers through technological change is the key element to explain rises in skill prices in a period with important increases in the relative supply of skilled workers (Katz1992,Juhn1993,Acemoglu2002, Krueger1993). However, by focusing on the demand side,

⁷ See [Fortin et al.,2011] for detailed discussion.

the standard approach missed other dynamics of wage determination. The wage inequality literature therefore shifted the emphasis from technology to institutional factors by arguing that inequality is driven mostly by exogenous interventions like minimum wage adjustment [Card and DiNardo, 2002] or unionization rate (Card2003, Freeman1997, Freeman1991, Machin1997, Card2001). [DiNardo et al.,1996] used decomposition analysis to detect changes in wage distributions, concluding that minimum wage adjustment can explain changes in wage inequality, particularly for women. [Gabaix and Landier, 2008] argue that changes in social norms have allowed top executive earnings to vary with market capitalization or firm size while [Fortin and Lemieux, 1997] argue that 1990s' deregulation may have caused the rise in inequality.

Second, it is related to papers on wage inequality in Turkey. Main finding in this literature is that minimum wage hikes, decreasing price of unmeasured skills, skill-biased technical change, skill upgrading in exporting firms can explain the decrease in wage inequality. [Bakis and Polat, 2015] showed that the real minimum wage increase in 2004 explains the significant decrease in the wage gap between the 90/10 and 50/10 over the 2002-2010 period. The sharp increase in the real minimum wage probably helped narrow the wage gap with the upper percentiles. One major finding of [Bakis and Polat, 2015] is that between-group rather than within-group effects have driven the rise in equality since 2004. [Popli and Y, 2017] argue that falling wage inequality in Turkey may be related to the decreasing price of unmeasured skills while large quality differences in higher education may explain the variation in skill pricing. An early paper by [Meschi et al., 2011] using firm level data from the Turkey for 1980-2001 concluded that within-group effects indicate skill-biased technical change (SBTC) and skill upgrading in exporting firms, which supports the claim that technology adaptation increased relative demand. Using different surveys [Eksi and K, 2015] (Household Budget Survey) and [Tamkoand Torul, 2020] (Household Budget Survey and the Survey of Income and Living Conditions) discuss the the role of minimum wage increases in decreasing wage inequality. Using a difference-in-difference approach, [I et al., 2020] finds significant wage effects for men aged 45-64 and with post-secondary education. Their results indicate that the minimum wage adjustment of 2016 produced less wage increases for lower skilled demographic groups, especially for female sample.

The paper is organized as follows. Section 2 gives an overview of Turkish labor market. Section 3 presents wage inequality trends in Turkey. Section 4 applies Katz-Murphy framework to Turkish data and discusses whether observed changes in relative supplies can explain observed changes in relative wages. Section 5 decomposes wage inequality into composition and price effects following [DiNardo et al.,1996] methodology. And finally section 6 concludes.

2. Overview of Turkish labor market: key facts

Apart from the minimum wage, another alternative for lower educated workers that can increase their real wage is upgrading skills within the workplace since firm-specific skills can improve worker productivity and close the gap in terms of life-time earnings. As Table 0 shows, firm-

specific experience decreases in Turkey which implies that job turn-over increases over time. Also, the last two columns indicate that nearly half (43 %) of low qualified workers are sorted into small firms (less than 10 workers) which are likely to offer less opportunities for skill development. In short, Table 0 suggests that despite some improvements in schooling, Turkey's labor market structure implies small chances for skill upgrading.

	Female (%)	Less than	Years of	Informal	Firm specif	fic Small firm	Large firm (≥
		secondary	schooling	share (%)	experience	(≤ 10	50 workers)
		share (%)			for private	workers)	share for
					sector*	share for	ST***
						LTS**	workers
						workers	
2002	21.1	56.7	8.7	29.8	5.5	47.9	49.7
2003	20.8	54.8	8.9	29.7	5.8	49.2	49.5
2004	21.0	56.9	8.6	31.8	5.5	47.5	47.0
2005	21.3	54.7	8.9	30.6	5.1	45.8	46.8
2006	22.0	53.4	9.0	29.5	4.7	45.2	46.4
2007	22.2	52.4	9.1	27.2	4.7	44.8	45.7
2008	22.8	51.1	9.3	23.8	4.4	42.9	45.6
2009	23.3	50.1	9.4	22.9	4.3	43.9	45.8
2010	23.3	50.8	9.4	22.3	4.1	42.7	45.7
2011	24.0	50.5	9.5	21.9	4.0	43.5	44.6
2012	25.2	48.6	9.6	18.9	4.0	43.8	45.1
2013	26.3	48.1	9.7	17.2	4.0	43.4	45.4
2014	27.0	48.6	9.7	16.2	3.9	45.0	46.7
2015	28.0	47.5	9.9	15.3	3.9	44.8	46.8
2016	28.9	46.0	10.0	14.6	4.1	43.7	47.6
2017	29.4	45.2	10.1	14.7	4.1	44.1	48.5
2018	30.4	44.6	10.1	14.7	4.1	43.0	49.6
2019	31.2	42.7	10.3	14.5	4.4	42.6	50.0

Table 1. Some characteristics of wage earners in Turkey

Source: TurkStat, HLFS 2002-19, Only positive wage earners are included in the sample. *Tenure years in current job, ** LTS stands for less than secondary education level, ***ST stands for secondary or tertiary education level

Another key development is structural transformation that is taking place over last two decades. The first, the second, and the fourth columns in Table 0 provide clear evidence for significant compositional changes for share of female workers, share of below high-school graduates and share of informal sector workers. These compositional changes are directly affecting wage inequality measures. Figure 1 compares the composition of endowments across the wage percentiles for 2002, 2010 and 2019. Mean years of schooling increased more at both ends of the distribution, which may reflect generational differences in schooling. Figure 1 Panel (b) shows that the proportion of working women has not risen uniformly across the wage distribution. While the lowest wage percentile became predominantly female in 2019, the segment above the median remained less affected. For the top wage percentiles, the gender gap in employment share narrowed. A combination of two factors likely contributed to this disproportionate shift. First, Turkey's expansion of higher education has favored women due to their higher access Polat2017, Caner2019. Secondly, there has been a secular rise in labor market participation due to cohort effects [Tunal et al., 2017].

Beside the structural changes experienced over the last two decades, three institutional factors may have influenced wage determination. First, depending on compliance, the legal minimum wage directly affects lower wage deciles. Second, centralized wage bargaining may result in a lower bound for wages in specific sectors. Compared to other OECD countries, bargaining coverage is very limited in Turkey and union density rate is very low (Table 1). In the private sector, labor market institutions are too weak to enforce wage indexation, so minimum wage adjustment provides the only reference point in bargaining for low wage workers. The third institutional factor is the collective bargaining power of public sector employees. The ICTWSS Data Base classification (Table 1) shows that, besides regulating minimum wages, Turkey's government is also the principal actor in setting public sector wages. Given that public sector⁸ workers tend to be more educated, wages in the upper deciles are likely to be affected by government decisions. Thus, the major institutional actors of wage setting are missing within this framework while wage setting seems to only reflect political bargaining.

		Bargain	ing Cov	erage		Union	density	y rate				Minimum
	Coordina tion of	-	-	-			-					
	wage	Public		Private		Total		Public		Private		Wage
	setting	sector		sector				Sector		Sector		Setting
Argentina	1	100.0	а	53.7	а	31.9	b					5
Canada	0	76.3	d	16.1	d	29.4	С	72.0	е	14.8	е	8
Chile	0					17.7	d	0.0	С	20.3	С	8
France	1	100.0	С	90.2	С	8.8		19.8	а	8.7	а	8
Germany	2	99.0	С	51.2	С	16.7	е	26.7	С	14.7	С	6
Korea,	1			5.0		10.5	е	16.5	С	9.1	С	-
Republic of												
Netherlands	3	96.0	а	83.9	а	16.4				15.2	d	7
Norway	2	100.0	е	52.0	е	49.2		80.0	е	38.0	е	1
Poland	0					12.7	d	22.0	а	10.0	а	5
Portugal	3					15.3	d	59.0	а	11.0	а	5
Romania	0	45.5	а	7.2	а	20.0	d					9
Spain	4	100.0	е	59.0	е	13.6		38.0	а	14.0	а	5
Sweden	2	100.0	d	84.0	d	65.6	е	79.0	е	64.0	е	1
Turkey	1	10.0	d	5.2	d	9.2		11.0	d	6.8	d	5
United	0	58.9		14.7		23.4		52.5		13.2		6
Kingdom												
United	0	39.0	С	7.3	е			33.9		6.4		9
States o	f											
America												

Table 2. Comparing Institutional Characteristics of Labor Markets

Source: [Visser, 2019], ICTWSS Data base (2018) version 6.1. Data available for the latest year. a=2013, b=2014, c=2015, d=2016, e=2017. 1) *Types of coordination of wage setting*: 0 = No specific mechanism identified; 1 = Government sets signals (public sector wages, minimum wage); 2 = Pattern bargaining; 3 = Intra-associational ("informal centralisation"); <math>4 = Inter-associational by peak associations. 2) Bargaining (or Union) Coverage: Employees covered by collective (wage) bargaining agreements as a proportion of all wage and salary earners in employment 3) Union density rate: Net union membership as a proportion of wage and salary earners in employment. 4) Minimum wage setting: <math>1 = Minimum wage is set by government after (non-binding) tripartite consultations; 6 = Minimum wage set by judges or expert committees, as in award-system; 7 = Minimum wage is set by government, bound by a fixed rule (index-based minimum wage); 8 = Minimum wage is set by government can (and sometimes does) take a discretionary decision; 9 = Minimum wage is set by government, without a fixed rule.

⁸ The centralization of employment in the public sector is very high compared OECD countries. See [OECD, 2019], Government at a Glance 2019, OECD Publishing, Paris, Table 3.4.

https://doi.org/10.1787/888934032054https://doi.org/10.1787/888934032054

3. Wage Inequality Trends

The main data source is the annual Household Labor Force Surveys (HLFS) compiled by TurkStat for 2002 - 2019 period.⁹ The monthly wage data only covers wage earners and excludes the earnings of self-employed workers. Unless otherwise indicated, we impose no restrictions on the sample other than trimming. The top and bottom 0.1 % are trimmed using hourly wages, which are all expressed in 2019 prices.¹⁰ Weekly regular hours are converted to monthly hours on the assumption that a typical wage earner spends 6 days at work per week and 26 days per month. Unless otherwise reported, TurkStat's population weights are used for each calculation. Workers reporting zero earnings or zero regular hours are omitted. Table 2 provides basic descriptive statistics for selected years.

		2002	20	006	201	0	2014		2018	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Real	1.793	0.794	1.956	0.667	2.091	0.673	2.223	0.650	2.351	0.578
hourly										
wage (log)										
Real	7.150	0.698	7.343	0.576	7.451	0.589	7.552	0.575	7.641	0.525
monthly										
wage (log)										
Female	0.224	0.417	0.219	0.414	0.232	0.422	0.264	0.441	0.303	0.460
Years of	8.762	4.078	8.949	4.113	9.432	4.177	9.686	4.216	10.061	4.212
schooling										
Tenure	7.906	7.788	6.967	7.593	6.417	7.490	6.223	7.759	6.265	7.827
years										
Social	0.707	0.455	0.709	0.454	0.774	0.418	0.828	0.378	0.851	0.357
Security										
(Formal										
Contracts)										
Regular	50.677	12.919	52.414	14.099	51.066	13.534	49.469	13.124	47.313	11.626
W.Hours										
Private	0.676	0.468	0.728	0.445	0.744	0.437	0.740	0.438	0.702	0.457
sector								<u> </u>		0.450
Firm size	0.352	0.478	0.350	0.477	0.331	0.471	0.355	0.478	0.327	0.469
≤ 10										
Firm size	0.253	0.435	0.282	0.450	0.307	0.461	0.276	0.447	0.269	0.443
11-49										
Firm size	0.395	0.489	0.367	0.482	0.362	0.481	0.370	0.483	0.404	0.491
≥ 50						<pre></pre>		-	0.6 = 6 =	
No. Obs.		45,178	74	,206	84,	689	93,850	5	96,707	

Table 3. Summary Statistics

Source: TurkStat, HLFS 2002-18, Only positive wage earners are included in the sample. No sampling weights are used. Top and bottom 0.1% is trimmed using hourly wages.

Figure 2 presents the cumulative real hourly wage growth for different percentiles in Turkey between 2002 and 2019, using data from all workers. There is almost a perfect negative correlation

⁹ Although TurkStat made several changes in the survey design during the period (2002-03, 2004-2009, 2010-2014, and 2014-19), we do not believe these modifications are likely to affect the wage inequality trends in a significant way.

¹⁰ Since wage inequality is related to wage order. Trimming 0.1% would have no effect on inequality measures.

between wage levels in 2002 and cumulative wage growth until 2019. Low wages in 2002 grew more over the period, which is the key to decreasing wage inequality in Turkey.

Figure 2. Cumulative percentile real hourly wage growth, 2002-2019

Figure 2 unfortunately obscures an important development regarding wage dynamics in Turkey, namely public sector wage dynamics. Figure 3, which contrasts the private and public sectors, reveals two important differences. Firstly, private sector wages grew steadily over the 2002-2019 period whereas public sector wages stopped growing around 2012. Secondly and more importantly, there is a clear difference in the lower tail of the public sector's wage distribution between 2002 and 2019. The cumulative real wage growth was almost zero for the 10th percentile in the public sector whereas it almost doubled for the same percentile in the private sector. [Aktu et al., 2021] provides a detailed comparison private and public wage profiles using decomposition analysis.

Figure 3. Public sector/private sector by selected percentiles (cumulative real hourly wage growth, 2002-2019)

For a more detailed comparison, we calculate the ratio of public to private average wage ratio for selected percentiles (*p*10, *p*25, *p*50, *p*75, and *p*90) in Figure 4. There are four developments that need to be underlined. The first is the public/private wage ratio for the 10th percentile. While trends are similar for other percentiles, the 10th percentile is a clear outlier. The second observation concerns the minimum wage shock in 2004. For all selected percentiles, the public/private wage ratio declines suddenly, which suggests that wage increases were higher for the private sector in 2004, probably because of stronger spillover effects. The third observation is that the public/private wage ratio gradually returned to its 2002 level by 2012. Here, the variation in the middle of the wage distribution is higher than the lower (p10) and the upper (p90) tail. The fourth observation is that there was a steady decline in the public/private wage ratio at all levels after 2012 - with p10 being an outlier. Surprisingly, the minimum wage shock in 2016 looks like an ordinary point in the graph, unlike the shock in 2004, which was almost the same size.

Figure 4. Public sector/private sector by selected percentiles (real hourly wage ratio, 2002-2019)

Figure 5 shows the percentile and education wage inequality measures for the period studied. We prefer to contrast hourly wages instead of monthly wages. Actually, monthly wage inequality is lower than hourly wage inequality due to the fact that low wage jobs are associated with longer working hours. Note that longer working hours is a feature of job quality in Turkey.¹¹ There were two major minimum wage shocks in the analyzed period. In both 2004 and 2016, the real minimum wage increased by approximately 25 percent, which significantly decreased all wage inequality measures: overall (p90/p10) wage inequality, upper-tail (p90/p50) wage inequality, and lower-tail (p50/p10) wage inequality. The raw measures suggest a clear decrease in wage inequality following minimum wage shocks. The effect of the 2004 minimum wage adjustment was more visible than the increase in 2016 as the gap with the upper percentiles narrowed significantly. The evolution of wage inequality between p50/p10 suggests that the minimum wage did not clearly reduce wage gaps below the median. We will discuss in detail later the spill-over effect of minimum wages. Another interesting finding is the structural break around 2012. After the 2004 shock, there was a mostly steady increase in all wage inequality measures until 2012 followed by a mostly steady decline until 2016, the second major minimum wage shock. While this structural break is very clear in the education view, it is not as distinctive as in the percentile view.

Figure 5. Wage inequality trends by education and percentile ratios - hourly wages

¹¹ For details, see [Baket al., 2018]

In terms of education-based differences (see Figure 5), the gap between higher and lower education groups narrowed following the 2004 minimum wage shock. It stayed relatively stable until 2008 before rising until 2012. After that, wage premiums for higher education groups gradually decreased compared to those for groups with less than secondary education. Apart from 2002-2003, there was a clear break after 2012. We believe that the expansion in higher education after 2006 might be responsible for this trend. Either the increase in the supply led to a reduction in premiums or there may be quality sorting. In any case, it seems that demand for skilled labor did not increase to match supply. Hence, we can argue that a skill-biased technical change (SBTC) mechanism is not likely to be operative during the period following the higher education expansion.

Figure 6 shows three significant episodes of educational wage inequality. The first episode (2002-2007) is the catch up episode for the less educated workers through the minimum wage adjustment after 2004. In the second episode (2008-2012), the wages of post-secondary workers increased the most (the area between the red dashed line and the black line), which implies a rise in inequality that is more pronounced for men. [Bakis and Polat, 2015] argue that this trend is a result of "between industry" effects due to structural transformation (reallocation of employment across industries). In other words, the rise in skilled labor demand was limited to expansion of certain sectors without producing an overall shift in the economy. In the last episode (2013-2019), the sharp increase in minimum wage in 2016 led to a second catch-up moment for less educated workers while post-secondary level wages remained more stagnant, probably reflecting the expansion in tertiary education. Strikingly, the effect of the minimum wage hike in 2016 disappears as education level increases.

Figure 6. Real wage growth by education level and gender (public and private sector)

Figure 7. Real wage growth by education level and gender (private sector)

The fact that average wages for the post-secondary group increased more than others in the second episode (2008-2012) deserves more discussion. Even though it seems as if there was a structural transformation or rising skill price related to higher demand for post-secondary graduates, actually this is misleading. Once we consider the years after 2010 and exclude the public sector employees, we see that real wages in the private sector evolved very similarly for all education levels (see Figure 7) which contradicts findings in [Bakis and Polat, 2015]. As a result, developments between 2008 and 2012 are best understood once we take into account institutional factors such as the centralized bargaining power of Turkey's public sector.

Figure 8) clearly indicates that the increases in the wages of post-secondary education level workers were limited to public employees for this specific episode. Figure 8) displays the publicprivate sector wage ratio by educational level. It reflects the institutional dimension of wage bargaining in Turkey in several respects. Firstly, until 2012, public wages increased more than private wages for the tertiary education level due to public sector wage bargaining.¹²Secondly, for low education levels (5 years or fewer), public wages consistently increased less than private sector wages over the entire period analyzed. This is probably due to a recruitment policy shift that allowed subcontracting in some public services ('taşeron işçilik' in Turkish). Thirdly, while public and private sector wages evolved similarly for secondary, secondary vocational, and primary education (8 years) until 2012, the public/private wage ratio subsequently converged strongly at all education levels.

¹² [Aktuet al.,2021] also provide evidence of sectoral (public versus private) differences in real wage adjustments for Turkey.

Figure 8. Public sector/private sector by education level (mean hourly wages), 2002-2019

Figure 9 presents percentile wage growths for different periods. Using findings in this figure we can make four observations regarding the percentile view of wage inequality trends. First, wage inequality decreased in 2003 compared to 2002 even before the 2004 minimum wage increase. This is probably due to the catching up of low wages in 2003 after the severe crisis in 2001. Second, in the 2004-2012 sub-period, the wage growth is U-shaped: high for lower and higher wage segments and low in the middle segments. As a result, between 2004 and 2012 the overall (p90/p10) and upper-tail (p90/p50) wage inequality measures are stagnating while only lower-tail (p50/p10) wage inequality is decreasing (see also Figure 5). Third, in all other subperiods except 2004-2012, the wage growth is higher for lower wage segments implying a decrease in wage inequality measures. Fourth, even after a relatively large shock to minimum wage in 2016 wage inequality continued to decrease because between 2017 and 2019, upper decile real wages clearly stagnated while lower deciles increased slightly which reduced the wage gap in favor of the lower wage distribution.

Residual wage inequality concerns inequality in labor income within narrowly defined demographic (skill) groups. In Western countries, the discussion focuses on whether increases in residual inequality can be explained by episodic (one-time) events. One potential explanatory variable is a change in labor force composition. [Lemieux, 2006], for instance, finds that compositional changes account for a large part of the growth in residual inequality in USA between 1973 and 2003. More importantly, he shows that changes in residual wage inequality are concentrated at the upper tail of the wage distribution (mainly college educated workers). In Turkey, we see that residual wage inequality decreased between 2002 and 2019 (Figure 10). Throughout the period, upper and lower deciles of the residual wage distribution converges and thus result in great decline in inequality. [Tamkoand Torul, 2020] also documents similar declining trends for residual wages between 2002-2016 using different survey data. Note that minimum wage shock in 2016 produced a greater decline in residual wage gap. After the 2016 shock, the wage gap between lower and upper segments remained stable. We, once again, attribute this declining trend to sustained wage indexation which kept real wage growth positive for lower than median through gradual minimum wage adjustments. A second factor could be the decrease in skill prices for the upper wage deciles which need further elaboration going beyond our framework in this study. Assuming that differences in endowment across years might be responsible for the secular decline residual inequality, a similar decomposition will be carried out in the last section.

4. Studying wage dynamics within supply and demand framework

We use the approach of [Katz and Murphy, 1992] (hereafter KM) for studying wage dynamics in Turkey. Our presentation of this approach is brief, given that nothing new is added to the original methodology. For a detailed exposition, readers should consult [Katz and Murphy, 1992], [Katz and Autor, 1999] and [Acemoglu and Autor, 2011]. For a previous application of the framework to wage dynamics in Turkey, see [Bakis and Polat, 2015]. In the KM setup, one creates two samples, one for wages and one for supplies (quantities). Each sample has a finite number of cells defined by demographic characteristics. Typically, each cell is defined by gender, education, and experience. For our study, we create 50 gender-education-experience cells: 2 for gender, 5 for education level (below primary, primary, high school, vocational high school, and college), and 5 for years of work experience (0-9, 10-19, 20-29, 30-39, 40-49).

For each cell, we compute average real wage and employment share (in total hours worked) using sample weights. Thus, the main data set is two matrices of 50 by 18 cells (for the number of years from 2002 to 2019) - one for the wage sample and the other for the quantity sample. We mostly compare broader categories, such as college graduate workers and high school graduates. For such broad categories, KM propose a fixed-wage approach whereby fixed wages are the average relative wages for each cell. Once a reference wage is chosen for each year, the average wage of the cell is divided by this reference wage to obtain the matrix of relative wages from which we get the vector of average relative wages by taking arithmetic mean of relative wages over the years. By multiplying regular hours worked in a cell by average relative wage we obtain labor supply in efficiency units to obtain the matrix of the quantity sample in terms of efficiency units.

Similarly, we compute the wage index for each broad category using a fixed-weight approach. The

aggregate wage for broad categories is a weighted average in which the weights are the arithmetic mean of the raw employment share for each cell. The objective in using fixed weights is to control for changes in the composition of the cells forming the broad category. In the KM set up, these aggregates are called composition adjusted.

	2002	2007	2012	2019	Change
Gender					
Male	1.8	2.0	2.1	2.3	51.9
Female	1.6	1.9	1.9	2.1	53.4
Education					
BelMS	1.4	1.7	1.8	2.0	62.6
MS	1.5	1.7	1.8	2.1	55.7
HS	1.9	2.0	2.1	2.3	44.0
VHS	1.9	2.1	2.1	2.3	46.6
Uni	2.6	2.7	2.8	2.9	28.6
Experience	;				
0-9	1.5	1.8	1.9	2.1	62.2
10-19	1.8	2.0	2.1	2.3	49.7
20-29	1.8	2.0	2.1	2.3	45.7
30-39	1.8	2.0	2.0	2.3	49.5
40-49	1.4	1.7	1.8	2.0	61.8

Table 4. Real hourly wages, 2002-2019

Note: BelMS, MS, HS, VHS and Uni denote separate education groups (respectively, below middle school, middle school, high school, vocational high school and college graduates). "Change" column refers to the change in log average real hourly wages (multiplied by 100) over 2002-2019 period for broad demographic groups. First, the mean log real hourly wages are computed for 50 gender-education-experience cells in each year. Then, the mean log real hourly wages for broader groups are computed as the as weighted averages of these cell means using a fixed set of weights (the average employment share of the cell for the entire 2002-2019 period).

Table (4) shows the changes in the real hourly wages for different demographic groups for 2002-2019. The main difference between the calculations in Table (4) and standard measures of average real wages is that the calculations in Table (4) are composition adjusted. That is, they refer to the wages that would be observe if the demographic distribution of these broad groups remained fixed, as explained above. Over the entire period, average real wages increased by more than 50 percent: 51.9 percent for men and 53.4 percent for women. More importantly, we are sure that they do not reflect changes in wages due to a shift in the education or experience composition for men and women.

Note: Mean real hourly wages are computed for 50 sex-education-experience demographic groups, using all workers aged 15-64 who work between 8 and 84 hours and as wage earner. Total (weighted sum of) wage income is divided by total (weighted sum of) hours worked in each cell, where weights are sample weights of the HLFS. The mean log real hourly wages for broader categories are computed as a weighted average of the mean log wages where weights are given by average employment shares of the relevant sex-education-experience demographic groups. BelMS, MS, HS, VHS and Uni denote separate education groups (respectively, below middle school, middle school, high school, vocational high school and college graduates).

Table (4) shows that education level and real wage growth are negatively correlated. Between 2002 and 2019, average real wages rose by 28.6 percent for university graduates, 44 percent for high school graduates, 55.7 percent for middle school graduates, and 62.6 percent for below middle school graduates. Figure 11 shows the evolution of real wages for males (left) and females (right). The lower the education level, the stronger the real wage increase. There were two similar minimum wage hikes, in 2004 and in 2016, where the minimum wage increased by almost 25 percent. The real wages of low educated groups grew steadily for both genders, although the difference between the wage changes of different education groups was larger for women.

In contrast to education differences, there seems to be no systematic relationship between work experience and average real wage growth over the study period. Real wages grew by about 62 percent for workers with 0-9 or 40-49 years of experience, about 50 percent for workers with 10-19 or 30-39 years of experience, and 45.7 percent for workers with 20-29 years of experience.

	2002	2007	2012	2019	Change
Gender					
Male	78.1	79.7	76.4	72.5	-7.4
Female	21.9	20.3	23.6	27.5	22.6
Education					
BelMS	47.0	36.2	30.6	21.4	-78.8
MS	10.1	12.5	13.6	13.4	28.5
HS	12.4	12.7	10.9	10.4	-17.3
VHS	9.2	11.7	10.8	10.9	17.2
Uni	21.3	26.8	34.1	43.9	72.2
Experience					
0-9	17.9	20.1	19.6	20.8	14.6
10-19	33.8	32.3	32.5	30.2	-11.3
20-29	27.9	28.3	27.0	26.5	-5.0
30-39	15.1	15.2	16.1	17.0	12.1
40-49	5.3	4.2	4.8	5.6	4.0

Table 5. Relative supply changes (multiplied by 100), 2002-2019

Note: BelMS, MS, HS, VHS and Uni denote separate education groups (respectively, below middle school, middle school, high school, vocational high school and college graduates). "Change" column refers to the change in log share of total labor supply measured in efficiency units (multiplied by 100). To find labor supply in efficiency units we first compute the average relative wage of each of 50 cells over the 2002-2019 period. Then, total hours worked in each cell are multiplied by these relative wages to get labor supply in efficiency units. Finally, we compute the employment share of each cell in efficiency units as the ratio of efficient labor supply of each cell divided by total efficient labor supply each year separately. For broad groups we just take the sum of these shares over the cells forming the broad group.

Table (5) presents the changes in relative labor supply measured in efficiency units for different demographic groups for 2002-2019. The main difference between the calculations in Table (5) and standard measures of employment shares is that the former include differences in productivity measured as average relative wages over the period. Women's share of hours worked (measured in efficiency units) increased from 21.9 percent to 27.5 percent between 2002 and 2019. Thus, the change in women's log share of employment corresponds to an increase of 22.6 percent compared to only 7.4 percent for men.

Figure 12. Changes in log labor share

Note: Labor supply is computed using all workers aged 15-64 who worked between 8 and 84 hours as wage earner, self-employed or unpaid family worker. For each year, we have 50 gender-education-experience cells. The total actual hours worked by each demographic group are computed taking into account sample weights. Then, these hours are converted into efficiency units by multiplying total hours in the cell by the average relative wage (fixed wage) of the cell, and share of each cell in efficiency unit is calculated. The labor supply of each broad groups is computed as the sum of labor shares forming this aggregate group. BelMS, MS, HS, VHS and Uni denote separate education groups (respectively, below middle school, middle school, high school, vocational high school and college graduates).

Table (5) shows interesting dynamics regarding employment shares (measured in efficiency units) across education levels. The employment share of below middle school graduates fell sharply from 47 percent to 21.4 percent whereas that of university graduates increased from 21.3 percent to 43.9 percent. The employment share of middle school graduates and vocational high school graduates increased slightly while the share of regular high school graduates decreased moderately. As Figure 12 makes clear, at least part of the 'good' performance of low educated groups in real wage growth can be explained by the usual market forces. The steady decline in the share of below middle school educated workers, this may explain the strong increases in their wages whereas the relatively large increases in the share of college graduates can explain their 'poor' wage performance. Nevertheless, at least two puzzles in Figures 11 and 12 cannot be explained by the usual market forces. First, the share of middle school graduates in total supply is increasing for constant (females) or slightly decreasing (males), and was well above the level for high school graduates than middle school graduates, which is puzzling.

There seems to be no systematic relationship between experience levels and changes in relative labor supply (measured in efficiency units). For workers with 10-19 and 20-29 years of experience, the share of hours worked decreased by 11.3 percent and 5 percent, respectively whereas, for workers with 0-9 and 30-39 years of experience, the share of hours worked increased by 14.6 percent and 12.1 percent, respectively. For workers with 40-49 years of experience, the share of hours worked increased slightly.

The most striking change in relative supply in Table (5) concerns education level, particularly the

changes in labor supply of the least and most educated groups. This raises the question of where these changes come from. To better understand dynamics behind these changes, we analyze how standard measures of employment shares (share of hours worked) changed in industries and occupations in Table (6) and Table (7). This revealed important differences across industries and occupations, and large changes in the sectoral and occupational distributions of employment over time.

	BelMS	MS	HS	VHS	Uni
sector9/occup9					
Agriculture	34.1	15.0	7.0	6.0	1.7
Mining	0.5	0.6	0.5	0.6	0.4
Manufacturing	19.7	24.4	17.3	26.4	11.9
Electricity and	0.6	0.6	0.6	1.5	0.8
Gas					
Construction	8.2	8.3	5.1	5.5	3.6
Trade	19.8	29.0	35.1	27.7	15.9
Transport	5.3	6.2	7.4	6.5	5.2
Finance	1.1	1.8	5.2	4.7	12.5
Other services	10.7	14.1	21.8	20.9	48.0
Managers	5.7	6.9	12.0	8.4	15.4
Professionals	0.1	0.3	2.1	3.4	39.5
Technicians	1.5	3.3	8.6	13.1	14.2
Clerical	1.2	4.1	14.8	12.6	13.3
workers					
Service and	13.6	21.6	27.9	20.5	10.6
sales workers					
Skilled	28.0	11.4	5.6	4.9	1.2
agricultural					
workers					
Trade workers	17.7	21.0	10.3	17.1	2.9
Operators	12.7	14.6	9.5	11.9	1.6
Unskilled	19.7	16.7	9.3	8.2	1.4
occupations					

Table 6. Average	industrial and	occupational	distributions of	of education	groups, 2002-2019

Note: BelMS, MS, HS, VHS and Uni denote separate education groups (respectively, below middle school, middle school, high school, vocational high school and college graduates). Sum of employment shares is 100 for each education group for both industries and occupations.

Table (6) shows average employment in different industries and occupations for 2002-2019. When the employment distribution of an industry or occupation changes, this is likely to affect the relative wages of concerned groups because of very large differences in employment distribution across industries and occupations. For example, more than half of university graduates work in other services while approximately one third of high school graduates work in trades and approximately one third of below middle school graduates work in agriculture. Thus, any

C	2002	2007	2012	2019
sector9/occup9				
Agriculture	31.3	19.1	19.7	14.6
Mining	0.5	0.6	0.5	0.5
Manufacturing	18.5	20.8	19.2	19.5
Electricity and	0.4	0.5	0.9	1.0
gas				
Construction	4.8	6.5	7.8	5.8
Trade	22.2	25.3	22.4	23.0
Transport	5.2	6.3	5.9	5.6
Finance	3.2	3.0	3.8	5.1
Other services	13.8	17.9	19.7	24.9
Managers	9.7	10.4	6.8	5.9
Professionals	5.1	5.3	7.4	9.9
Technicians	4.8	6.5	5.4	6.2
Clerical	5.1	6.3	5.8	6.8
workers				
Service and	11.7	14.1	19.0	22.7
sales workers				
Skilled	28.1	15.5	15.5	11.2
agricultural				
workers				
Trade workers	15.6	15.8	15.0	13.3
Operators	9.0	12.2	10.9	10.1
Unskilled	11.0	13.8	14.1	13.8
occupations				

expansion in other services necessarily increases labor demand for university graduates.

 Table 7. Change in industry and occupation employment distributions, 2002-2019

Note: Sum of employment shares is 100 each year for both industries and occupations.

And as shown in Table (7), substantial changes occurred in the industrial and occupational distribution of employment over the 2002-2019 period. Table (7) is an imperfect proxy for "between-industry shifts". Share of agriculture in total employment went from 31.3 percent to 14.6 percent. Almost all of these displaced workers are most likely located in "other services" whose employment share increased more than 10 percentage points (from 13.8 percent to 24.9 percent). In the occupation side, share of "sales" workers increased more than 10 percentage points while share of skilled agriculture workers decreased almost 19 percentage points.

Given relative wages, shifts in labor demand may have two different sources: factors that change the employment share of industries and factors that change the education composition within industries. Even if the education composition of industries stays constant, when the share of a given sector increases, the demand for each education level will be affected differently, given the share of each education group in the industry. This is the between effect. As Table (7) shows, there were strong between effects in Turkey's economy between 2002 and 2019 as well as factors that changed the education composition within industries. For various reasons, demand for certain education groups may increase over time. This is the within effect. Typical examples of within-industry shifts are price changes in non-labor inputs (e.g. computers), off-shoring, and skill-biased technological change (SBTC). The classic example of SBTC is the rise of computer-related tools in production that increases demand for college graduates in each sector. Between-industry shifts may be driven by shifts in product demand (say because of international trade or consumer preferences) or differences across industries in factor-neutral technological change.

4.1. Can changes in relative supplies explain changes in relative wages?

An important question when studying wage dynamics in Turkey is whether changes in relative supplies can explain changes in relative wages. To formally answer this question, following the seminal work of KM, we create two vectors for change in relative wages and change in relative supplies. Taking the dot product of these two vectors (consisting of 50 demographic groups),

$$\sum_{i=1}^{50} \Delta X_i \Delta W_i$$

we examine whether they are positively or negatively correlated. X and W represent, respectively, relative labor supply (in efficiency units) and relative wages. A Negative inner product favors stable demand hypothesis where standard supply-demand adjustment works. But a positive inner product implies that demand curve must have shifted so that demand outweighs supply for certain demographic groups. Table 8 summarizes inner product of grouped years while Table 9 gives inner product when we use all years between 2002 and 2019. To decrease the risk of any measurement error, we first report the grouped data results (Table 8). We group the years as 2002-2004, 2005-2014, and 2015-2019 and take the arithmetic average of relative wages and labor share (in efficiency units) for each group. Each year (or group of years) has 50 cells for both wage and quantity samples. The results are consistent with the stable demand hypothesis, with almost all entries being negative. This implies that the relative price of a skill groups falls when its relative supply increases.

1	Table 8. Inne	r product of changes	in relative wag	ges with changes	in relative supply	y for 50
($= 2 \times 5 \times 5$) demographic group	s. Public and p	rivate sector wo	rkers.	

	02-04	05-14	
05-14	0.00		
15-19	-0.04	-0.02	

The yearly changes in Table 9 indicate that the zero entry in the grouped data is unlikely to be noise or measurement error. Instead, the entries between 2004 and 2014 are mostly positive, which suggests a lack of a negative relationship between changes in factor supplies and changes in relative wages. This would not happen with a stable demand curve. Thus, we need an explanation for 2004-2014, when there was probably a demand shift, such that demographic groups saw their

relative supply increase experience at the same time as a rise in their relative wages.

Table	e 9. In	iner p	oroduct	of ch	anges	in re	elative	e wages	with	chan	ges in	relativ	ve supp	oly for	[.] 50 (=	=	
2×5	2 × 5 × 5) demographic groups. Public and private sector workers																
	2002	2002	2004	2005	2006	2007	2000	2000	2010	2011	2012	2012	2014	2015	2016	2017	2019

	2002 2003 2004	2005 2006 2007	2008 2009	2010 2011 2012	2013 2014	2015 2016 2017 2018
2003	-0.00					
2004	-0.00 0.00					
2005	-0.01 -0.00 -0.00					
2006	-0.01 -0.00 0.00	0.00				
2007	-0.02 -0.01 0.00	0.00 -0.00				
2008	-0.02 -0.01 0.00	0.00 -0.00 -0.00				
2009	-0.01 -0.01 0.01	0.01 0.00 0.00	0.00			
2010	-0.01 -0.00 0.01	0.01 0.00 0.00	0.00 -0.00			
2011	-0.01 -0.00 0.01	0.01 0.00 0.01	0.00 -0.00	-0.00		
2012	-0.01 -0.00 0.02	0.02 0.01 0.01	0.01 0.00	0.00 0.00		
2013	-0.01 -0.01 0.02	0.01 0.00 0.01	0.00 -0.00	-0.00 -0.00 -0.00		
2014	-0.02 -0.01 0.01	0.01 0.00 0.01	0.00 -0.00	-0.00 -0.00 0.00	0.00	
2015	-0.03 -0.02 0.01	0.00 -0.00 0.00	-0.00 -0.01	-0.01 -0.00 -0.00	0.00 -0.00	
2016	-0.05 -0.03 -0.01	-0.01 -0.02 -0.01	-0.01 -0.02	-0.02 -0.01 -0.01	-0.00 -0.01	-0.00
2017	-0.06 -0.04 -0.02	-0.02 -0.03 -0.02	-0.02 -0.02	-0.02 -0.02 -0.02	-0.01 -0.01	-0.00 -0.00
2018	-0.07 -0.06 -0.03	-0.03 -0.04 -0.03	-0.03 -0.03	-0.03 -0.03 -0.02	-0.02 -0.02	-0.01 -0.00 -0.00
2019	-0.09 -0.08 -0.04	-0.04 -0.05 -0.04	-0.04 -0.05	-0.05 -0.04 -0.04	-0.03 -0.03	-0.02 -0.01 -0.00 -0.00

Table 10.	. Inner pi	roduct of	changes i	n relative	wages	with	changes	in relative	e supply	for 50 (=
$2 \times 5 \times 5$	5) demogr	raphic gr	oups. Only	v private s	ector w	vorke	rs.			

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
2003	-0.00																
2004	-0.01	0.00															
2005	-0.01	-0.00	-0.00														
2006	-0.01	-0.00	0.00	0.00													
2007	-0.02	-0.01	-0.00	0.00	-0.00												
2008	-0.02	-0.01	0.00	0.00	-0.00	0.00											
2009	-0.02	-0.01	-0.00	-0.00	-0.00	-0.00	-0.00										
2010	-0.03	-0.01	-0.00	-0.01	-0.01	-0.00	-0.00	-0.00									
2011	-0.03	-0.02	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00	-0.00								
2012	-0.04	-0.02	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00	-0.00	0.00							
2013	-0.05	-0.03	-0.01	-0.02	-0.02	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00						
2014	-0.05	-0.03	-0.01	-0.02	-0.02	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00	0.00					
2015	-0.06	-0.04	-0.02	-0.03	-0.02	-0.02	-0.02	-0.01	-0.01	-0.00	-0.00	0.00	-0.00				
2016	-0.08	-0.05	-0.03	-0.04	-0.04	-0.03	-0.03	-0.02	-0.02	-0.01	-0.01	-0.00	-0.00	-0.00			
2017	-0.09	-0.06	-0.04	-0.04	-0.04	-0.03	-0.03	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	-0.00	0.00		
2018	-0.10	-0.07	-0.04	-0.05	-0.05	-0.04	-0.04	-0.03	-0.03	-0.02	-0.02	-0.01	-0.01	-0.00	-0.00	0.00	
2019	-0.12	-0.09	-0.06	-0.07	-0.07	-0.06	-0.06	-0.04	-0.04	-0.03	-0.03	-0.02	-0.02	-0.01	-0.00	-0.00	-0.00

Table 11. Inner product of changes in relative wages with changes in relative supply for 50 (= $2 \times 5 \times 5$) demographic groups. Only public sector workers.

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017 2018
2003	0.00															
2004	0.00	0.00														
2005	-0.00	0.00	0.00													
2006	0.00	0.00	0.00	-0.00												
2007	0.00	0.00	0.00	0.00	-0.00											
2008	0.00	0.00	0.00	0.00	-0.00	-0.00										
2009	0.00	0.00	0.01	0.00	0.00	0.00	0.00									
2010	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00								
2011	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00							
2012	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00						
2013	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	-0.00	-0.00					
2014	0.00	0.00	0.01	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00				
2015	0.01	0.00	0.01	0.01	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00			
2016	0.00	0.00	0.01	0.01	0.00	0.00	0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00		
2017	0.00	0.00	0.01	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	
2018	0.00	0.00	0.01	0.00	-0.00	-0.00	-0.00	-0.01	-0.01	-0.01	-0.00	-0.00	-0.01	-0.00	-0.00	-0.00
2019	0.01	0.01	0.01	0.01	-0.00	-0.00	-0.00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.00	-0.00 0.00

Given Table 9, the logical next step is to search for the reasons behind the required demand shift in the KM setup. KM proposes a shift-share analysis to decompose increased demand into within and between components. [Bakis and Polat, 2015] does this exercise for Turkey's economy between 2002 and 2011. However, as we discussed in the Introduction, wage setting practices in Turkey's public sector during the analyzed period did not follow market practices. Hence, we suspect that the positive entries in Table 9 may be due to the public sector. We therefore repeat the matrices of inner products for private sector employees (Table 10) and public sector employees (Table 11) separately. This shows a very different wage dynamics. In Table (10), almost all entries are negative, implying that the demand curve is fairly stable in the private sector whereas Table (11) shows changes in both relative demand and relative supply in the public sector. Surprisingly, most entries are positive apart from 2009-2011 and post-2014. Consequently, we claim that wage setting policy in Turkey's public sector is an important factor to explain the positive relationship between changes in relative supplies and changes in relative wages.

We conclude that the observed wage dynamics in the private sector can be explained through a simple supply and demand framework. A steady (or very slowly shifting) demand curve along with observed changes in the supply side are sufficient to explain the observed wage dynamics. In reality, even a smoothly shifting demand curve is allowed. It seems that any increase in the relative demand for some groups is offset by even stronger growth in the relative supply of the same group.

Figure 13. Relative Wage and Supply Changes - Private sector

Figure 14. Relative Wage and Supply Changes - Public sector

4.2. Can changes in the minimum wage explain changes in wage inequality?

To answer this question, we regressed each wage inequality measure (P90/P10, etc.) separately on a constant and real minimum wage for 2002-2019:

$$y_t = \beta_0 + \beta_1 m w_t + u_t, \quad t = 2002, \dots, 2019$$

where y_t is one of the inequality measures and mw_t is real minimum wage in year t. We then compare the predicted and observed inequality measures. We repeat this using only private sector workers (Figure 12) and public sector workers (Figure 13). As these figures show, wage inequality can easily be explained by the real minimum wage for private sector workers whereas, for the public sector workers, the level of the real minimum wage can explain very little of the inequality dynamics.

5. Decomposing wage inequality

When comparing wages of different groups there are two components to consider: price and quantity. In KM approach, when comparing wages of broad groups we keep composition constant so that the comparison is not affected by the "change in the composition" of these groups. This is radically different from the approach developed by [DiNardo et al., 1996] (hereafter DFL) which aims at measuring the contribution of "change in the composition". Obviously, in KM approach, the main focus is on "mean wages" as in Oaxaca-Blinder while in DFL methodology, we are interested in the entire wage distribution. So, the research question is rather different, but we believe that the above contrast helps in understanding how both approaches compare and complement each other.

In this section, we adopt the strategy used in [Fortin and Lemieux, 1997] to decompose the variance into wage (price) and composition components. The advantage of their approach is that it provides a counterfactual distribution over the entire wage dispersion. Unlike Oaxaca decomposition, it enables us to differentiate the effect at any point in the wage order.¹³ The DFL approach basically involves estimating re-weighting factors (through non-parametric models) to ensure that the attributes specific to each year are similar. The difference between the actual and counterfactual constructed distribution for a given year (or group) gives the pricing (wage) effect. By assumption, the price (wage) effect is the residual of all the factors assumed to intervene as exogenous factors. For our case, real changes for shorter periods can be considered as price or wage effects since the composition can hardly change without an economy-wide shock. Large real wage effects over shorter periods suggest that the wage adjustment or collective bargaining.¹⁴ As discussed in previous sections, collective wage bargaining in Turkey is limited to the public sector while very few unskilled workers are unionized. The only exogenous factor that could impinge on lower wages is thus minimum wage adjustment.

We use a probit model to estimate the counterfactuals used in the DFL decomposition. Table 11 and 12 show the results, using the same periodization as in Section 3. We use five sub-periods (2002-04, 2005-12, 2012-15, 2015-16, and 2016-19) in decomposing real hourly wage growth. We first discuss the differences in the percentiles before considering the relevant changes in top and bottom wage inequalities. In addition to the total sample, decomposition results are given for the five subgroups to reflect gender and sector differences.

Table 11 indicates that the highest real wage growth over the whole study period occurred in the lowest decile, p10, by 97.5 log points. The increase is slightly higher in the private sector and for men. The second largest overall increase is for p25, which saw a real wage increase of 85.3 log point. Several observations can be made. First, there is a proportional reduction in wage growth over the entire period moving toward higher wage deciles. Furthermore, while price effects clearly dominate below the median, above the median, changes in composition become more important. Regarding the wage distribution of private sector female wage earners, wages of the lower percentiles (p10, p25, and p50) grew significantly more than for men. However, it seems that much of this wage growth is due to differences in composition.

As expected, the minimum wage hikes in 2004 and 2016 caused huge real wage increases in the lower half of the distribution, mostly due to price effects. For private sector female wage earners, even at p75, the ripple effect of the minimum wage is quite evident for both periods. It is worth noting that the considerable endowment (educational) differences between private and public

¹³ Decomposition methods are discussed in [Fortin et al.,2011].

¹⁴ [Fortin et al.,2011] argue that this can be interpreted as a treatment effect.

sector workers had a large spill-over effect. Among female wage earners, the share of postsecondary graduates is 42.3 percent in 2016 but only 31.3 percent in the private sector.¹⁵ The ripple effect of the minimum wage beyond the median supports the reference wage hypothesis discussed earlier. Regarding gender differences, the 2016 minimum wage increase had a greater effect on women's wages than men's, particularly at p25 and p50. This finding is consistent with the minimum wage and inequality literature [DiNardo et al., 1996].

Wages grew differently in the upper percentiles (p75 and p90) than in the lower half of the distribution. They increased significantly between 2004 and 2012, but barely grew at all in the following sub-periods. This wage stagnation above the median (p50) is connected to negative price effects, particularly after 2016. Strikingly, wages at p90 in the private sector for both men and women faced negative price effects in almost every sub-period after 2012, except for 2016, when there was a minimum wage hike. It would be more accurate to interpret this t as a decrease in returns rather than a change in the wage schedule. The DFL method is not a detailed decomposition as it measures the price effect as a residual. What causes the total change to be positive is mostly differences in endowments, that is, the change in composition. For 2016-19, the upper half of the distribution experienced serious price effects, which require further explanation beyond decomposition.

The real wage (log) changes in percentiles shown in Table 11 also reveal how inequalities evolve in each period. Over the entire period, there was a sharp decline in all wage inequality measures. Table 11 and 12 indicate that much of this reduction is driven by price changes that we attribute to minimum wage changes. It Strikingly, wage growth for lower deciles outpaced that of higher deciles, particularly for wages above the median. Although compositional changes in endowments, such as the expansion in higher education, boosted wage inequality, the wage (price) treatment more than off-set the effects generated by changes in labor force composition.

The DFL results show that, except for lower-tail wage inequality (p50/p10), the price effect largely dominates the reduction in inequalities. The minimum wage increases in 2004 and 2016 clearly helped to narrow the wage gap by raising the wage floor for the lower half of the distribution. However, some of this decline resulted from the wage stagnation experienced in the upper percentiles, mainly due to price effects, particularly during 2012-2019. Overall, upper-tail wage inequality (90/50) contracted by around 23-27 log points (25-31 %) despite a modest expansion between 2004 and 2012.

The p90/p10 wage gap narrowed significantly over the study period. While minimum wage adjustments made a significant contribution in 2004 and 2016, changes in endowments added to this reduction in inequality. Especially for women, a significant part of the change was due to compositional developments. As already mentioned, the limited wage growth in the upper tail p90

¹⁵ Holding similar sample restrictions for men, it is 25.8 and 16.7, respectively.

was the key factor responsible for falling inequality between 2012 and 19.

The evolution of lower tail wage inequality is particularly significant when discussing the ripple effect of the minimum wage in Turkey. Between 2002 and 2019, the reduction in lower tail inequality was largely dominated by compositional changes (see Table 12). Specifically, female wage earners experienced significant inequality gains thanks to endowment. It is clear that, rather than minimum wage adjustments, inter-generational educational differences mainly explain the closing wage gap for lower-tail inequality. Minimum wage regulations affected the entire wage schedule in the lower half of the distribution, bringing it closer to the upper half. Taking p75 as a reference point, for example, the 2016 minimum wage increase has significantly reduced the p75/p25 and p75/p50 wage gaps through wage effects. In 2016, the p75/p50 wage gap was far more sensitive to minimum wage adjustment than lower-tail inequality (p50/p10). Similarly, when the price effect is taken as the minimum wage adjustment sensitivity measure, the reaction of the p75/p25 and p90/p25 wag gap was quite strong compared to other inequality measures. Both the 2004 and 2016 minimum wage increases produced very similar patterns in terms of wage effects. The DFL results indicate that the hourly wage distance of the 10th, 25th and 50th percentiles to the 75th and 90th fell in a similar fashion after the two minimum wage shocks. Turkey's case is thus a unique experiment in which a similar wage effect is obtained by changing institutional structures. The fact that p50/p10 seems almost unaffected by the minimum wage hike supports the ripple effect argument. An increase in the minimum wage moves the wage distribution below the median to the right, thereby creating real wage increases and widespread spill-over effects.

Residual wage inequality which we mentioned before also needs to be decomposed in order to understand the role of changing composition inherent in residual wage distribution. Table 13 summarizes the results of hourly residual wage decomposition in the private sector using DFL methodology. Without exception, in all sub-periods, the price (wage) component is the major factor driving the reduction in inequality. The differences in endowment has a positive but limited effect in widening the gap. It is likely that institutional factors like minimum wage are responsible for the secular increase in lower deciles. Nevertheless, we are unable to provide any plausible explanation particularly for the decrease in upper tail. We believe that the expansion in higher education which started in 2006 has relevance to reduction in higher deciles. It is probable that the expansion has only enlarged the pool of workers but did not create more jobs requiring advanced skills.

2002_04 2004_12 2012_15 2015_16 2016_10 2002_10																			
					2002-0)4	20	04-12		2012-1	5	20	15-16		2016-1	9	20	02-19	
		Total	Comp.	Price	Total	Comp	Price	Total	Comp	Price	Total	Comp	Price	Total	Comp	Price	Total	Comp	Price
p10																			
<i>P</i> ¹ •	Total	0.226	-0.049	0.275	0.385	0.108	0.277	0.152	0.054	0.098	0.161	0.028	0.133	0.051	0.032	0.018	0.975	0.449	0.527
	10141	0.220	0.0.0	0.270	0.000	0.100	0.277	0.102	0.00	0.090	01101	0.020	01100	0.001	0.002	0.010	01970	0	0.027
	Men	0.241	-0.038	0.279	0.377	0.115	0.262	0.152	0.067	0.085	0.179	0.059	0.120	0.063	0.069	-0.006	1.012	0.350	0.663
	Women	0.252	-0.065	0.316	0.491	0.126	0.365	0.048	0.057	-0.009	0 144	0.044	0.099	0.044	0.047	-0.003	0.978	0.437	0 541
	women	0.232	-0.005	0.510	0.471	0.120	0.505	0.040	0.057	-0.007	0.144	0.044	0.077	0.044	0.047	-0.005	0.970	0.457	0.541
	Private	0.292	0.000	0.292	0.426	0.154	0.272	0.154	0.079	0.074	0.159	0.011	0.148	0.061	0.028	0.033	1.092	0.434	0.658
	D ' /	0.202	0.000	0.202	0.454	0.1(1	0.202	0.122	0.070	0.0(4	0.170	0.017	0.150	0.044	0.010	0.025	1.002	0.257	0 (1 (
	Private	0.203	0.000	0.203	0.454	0.161	0.293	0.132	0.069	0.064	0.170	0.017	0.152	0.044	0.018	0.025	1.003	0.357	0.646
	(Men)																		
	Private	0.256	-0.044	0.300	0.603	0.174	0.429	0.192	0.134	0.059	0.169	0.043	0.126	0.069	0.041	0.028	1.291	0.665	0.626
	(Wome	0.200	0.011	0.200	0.005	0.171	0.12)	0.172	0.121	0.027	0.10)	0.015	0.120	0.007	0.011	0.020	1.271	0.000	0.020
	(wome																		
	n)																		
p25																			
	Total	0.181	-0.036	0.217	0.308	0.105	0.203	0.123	0.054	0.069	0.159	0.000	0.159	0.082	0.028	0.054	0.853	0.310	0.543
	м	0.1((0.02(0.202	0.200	0.105	0.202	0.124	0.042	0.001	0.17(0.020	0.140	0.004	0.041	0.044	0.070	0.000	0.507
	Men	0.166	-0.036	0.203	0.308	0.105	0.203	0.134	0.043	0.091	0.1/6	0.028	0.148	0.084	0.041	0.044	0.869	0.282	0.587
	Women	0.239	-0.033	0.272	0.316	0.121	0.195	0.094	0.012	0.082	0.213	0.038	0.175	0.072	0.065	0.007	0.934	0.300	0.634
		0.209	0.000	0.272	0.010	0.1.2.1	0.170	0.07 .	0.012	0.002	0.210	0.020	01170	0.072	0.000	0.007	0.50	0.000	0.00
	Private	0.252	-0.028	0.280	0.328	0.120	0.208	0.146	0.064	0.083	0.175	0.018	0.157	0.042	0.018	0.024	0.944	0.338	0.605
	Drivata	0.252	0.000	0.252	0.208	0.105	0.202	0.128	0.040	0.080	0.175	0.018	0.157	0.042	0.020	0.022	0.016	0.228	0.577
	Private	0.232	0.000	0.232	0.508	0.105	0.205	0.158	0.049	0.089	0.175	0.018	0.137	0.042	0.020	0.022	0.910	0.558	0.377
	(Men)																		
	Private	0.267	-0.022	0.290	0.390	0.182	0.207	0.152	0.095	0.057	0.198	0.018	0.179	0.042	0.010	0.033	1.049	0.557	0.492
	(Wome																		
	(** OIIIC																		
50	11)																		
p50																			
	Total	0.134	-0.059	0.193	0.236	0.095	0.140	0.096	0.039	0.057	0.148	0.039	0.109	0.042	0.010	0.033	0.656	0.192	0.464
	Mon	0.102	0.060	0.162	0.227	0.060	0.159	0.124	0.068	0.057	0.120	0.026	0.004	0.042	0.010	0.022	0.615	0.182	0.422
	IVICII	0.102	-0.000	0.102	0.227	0.009	0.156	0.124	0.008	0.057	0.120	0.020	0.094	0.042	0.010	0.033	0.015	0.162	0.435
	Women	0.123	-0.039	0.162	0.246	0.128	0.118	0.057	0.000	0.057	0.187	0.039	0.148	0.033	0.049	-0.016	0.646	0.172	0.474
	D :	0.105	0.000	0.405		0.10-	0.150	0.400	0.077		0.100	-		0.00	0.010	0.000	0 = (1	0.001	0
	Private	0.197	0.000	0.197	0.278	0.105	0.173	0.123	0.066	0.057	0.128	0.007	0.121	0.036	0.010	0.026	0.761	0.201	0.561
	Private	0.203	0.000	0.203	0 272	0.005	0.177	0.152	0.065	0.087	0.102	0.010	0.002	0.035	0.012	0.023	0.764	0.195	0 569
	(Mar)	0.203	0.000	0.203	0.272	0.075	0.177	0.152	0.005	0.007	0.102	0.010	0.072	0.055	0.012	0.025	0.704	0.175	0.507
	(Men)																		
	Private	0.244	0.000	0.244	0.273	0.078	0.195	0.111	0.062	0.049	0.187	0.039	0.148	0.040	0.036	0.004	0.855	0.226	0.628
	(Wome																		
	n)																		
n75	11)																		
<i>p</i> /3		0.046	0.0.74		0.010	0.150	0.4.44	0.001	0.070	0.000	0.0.(0	0 0 - 1	0.000	0.01-	0.40.5		0.474		
	Total	0.046	-0.051	0.097	0.313	0.172	0.141	0.024	0.063	-0.039	0.063	0.054	0.009	0.017	0.105	-0.088	0.464	0.329	0.135
	Men	0.010	-0.087	0.007	0.254	0.077	0.177	0.057	0.040	0.008	0.071	0.041	0.030	0.031	0.003	-0.062	0 422	0.247	0.176
	wiell	0.010	-0.007	0.077	0.254	0.077	0.1//	0.057	0.077	0.000	0.071	0.071	0.050	0.051	0.075	-0.002	0.445	0.277	0.170
	Women	0.016	-0.044	0.060	0.361	0.243	0.118	-0.068	0.000	-0.068	0.148	0.083	0.065	-0.062	0.090	-0.151	0.395	0.377	0.018
	Duizeste	0 107	0.000	0.107	0.200	0.126	0 1 4 4	0 1 1 0	0.044	0.075	0.101	0.022	0.070	0.020	0.065	0.02/	0646	0.200	0.256
	Private	0.107	0.000	0.10/	0.280	0.136	0.144	0.118	0.044	0.075	0.101	0.033	0.068	0.039	0.065	-0.026	0.646	0.290	0.356

Table 12. Decomposition of hourly wage growth using DFL method

32

	(Men)																		
	Private (Wome n)	0.162	0.006	0.156	0.272	0.197	0.075	0.110	0.075	0.035	0.107	0.000	0.107	0.007	0.022	-0.015	0.659	0.246	0.413
p90																			
	Total	-0.055	-0.035	-0.020	0.366	0.115	0.251	0.020	0.000	0.020	0.079	0.029	0.050	-0.028	0.013	-0.042	0.382	0.236	0.145
	Men	-0.040	-0.019	-0.020	0.329	0.118	0.211	0.057	0.057	0.000	0.030	0.010	0.020	0.007	0.058	-0.050	0.384	0.223	0.161
	Women	-0.028	-0.016	-0.012	0.377	0.110	0.268	-0.005	-0.003	-0.002	0.100	0.036	0.064	-0.042	0.051	-0.093	0.403	0.170	0.233
	Private	0.002	-0.008	0.010	0.345	0.265	0.080	0.079	0.118	-0.039	0.065	0.034	0.030	0.022	0.090	-0.068	0.513	0.390	0.123
	Private (Men)	-0.016	-0.011	-0.005	0.328	0.215	0.113	0.114	0.125	-0.011	0.030	0.025	0.005	0.032	0.076	-0.044	0.490	0.355	0.135
	Private (Wome n)	0.002	0.028	-0.026	0.308	0.336	-0.028	0.054	0.085	-0.031	0.114	0.041	0.074	-0.046	0.051	-0.097	0.433	0.498	-0.065

Private 0.107 -0.015 0.123 0.280 0.116 0.165 0.144 0.065 0.079 0.091 0.048 0.043 0.038 0.052 -0.014 0.662 0.293 0.369

Source: TurkStat, HLFS 2002-19, Only positive wage earners are included in the sample. Top and bottom 0.1 % is trimmed using hourly wages. Basic endowment specification for probit model includes controls for gender, age, education (6 category), formal contracts, regular working hours and interaction terms for age, gender and education groups.

	able 15	2002-04						age 11)4-12	iequa	2012-1	5 5	20	15-16		2016-1	9	200	02-19	
		Total	Comm	Drico	Total	Comm	Price	Total	Comm	Price	Total	Com	Drigo	Total	Comr	Price	Total	Comm	Price
		Total	Comp.	FIICE	Total	comp.	FIICe	10181	Comp.	FIICE	Total	comp.	FIICe	10181	Comp.	FIICE	Total	Comp.	FIICe
р90, р10	/																		
<u>p10</u>	Total	-0.281	0.014	-0.295	-0.020	0.007	-0.027	-0.132	-0.054	-0.077	-0.082	0.001	-0.083	-0.079	-0.019	-0.060	-0.594	-0.212	-0.381
	Men	-0.280	0.019	-0.299	-0.048	0.003	-0.051	-0.095	-0.010	-0.085	-0.149	-0.049	-0.100	-0.056	-0.011	-0.045	-0.629	-0.127	-0.502
	Women	-0.279	0.049	-0.328	-0.113	-0.016	-0.097	-0.054	-0.060	0.007	-0.043	-0.008	-0.036	-0.085	0.004	-0.090	-0.575	-0.267	-0.307
	Private	-0.290	-0.008	-0.282	-0.081	0.111	-0.192	-0.075	0.038	-0.113	-0.094	0.023	-0.118	-0.039	0.061	-0.101	-0.579	-0.044	-0.536
	Private (Men)	-0.219	-0.011	-0.208	-0.126	0.054	-0.180	-0.019	0.056	-0.075	-0.139	0.008	-0.147	-0.011	0.058	-0.069	-0.513	-0.002	-0.511
	Private (Women)	-0.254	0.072	-0.326	-0.295	0.162	-0.457	-0.138	-0.048	-0.090	-0.055	-0.003	-0.052	-0.115	0.010	-0.126	-0.857	-0.167	-0.691
p90/	(wonien)																		
<i>psv</i>	Total	-0.189	0.024	-0.213	0.130	0.020	0.110	-0.076	-0.039	-0.036	-0.069	-0.010	-0.059	-0.071	0.003	-0.074	-0.274	0.044	-0.318
	Men	-0.142	0.041	-0.182	0.102	0.049	0.054	-0.068	-0.011	-0.057	-0.089	-0.016	-0.073	-0.035	0.048	-0.083	-0.231	0.041	-0.272
	Women	-0.150	0.023	-0.174	0.132	-0.018	0.150	-0.062	-0.003	-0.059	-0.087	-0.003	-0.084	-0.074	0.003	-0.077	-0.243	-0.002	-0.240
	Private	-0.194	-0.008	-0.186	0.067	0.160	-0.093	-0.044	0.051	-0.095	-0.063	0.027	-0.091	-0.014	0.080	-0.094	-0.249	0.189	-0.438
	Private (Men)	-0.219	-0.011	-0.208	0.056	0.119	-0.063	-0.038	0.061	-0.099	-0.071	0.016	-0.087	-0.003	0.064	-0.067	-0.274	0.160	-0.434
	Private (Women)	-0.241	0.028	-0.270	0.036	0.258	-0.223	-0.057	0.023	-0.080	-0.073	0.002	-0.075	-0.086	0.015	-0.101	-0.422	0.272	-0.693
p50/	(Wollien)																		
<u>p10</u>	Total	-0.093	-0.010	-0.082	-0.150	-0.013	-0.137	-0.056	-0.015	-0.041	-0.013	0.011	-0.024	-0.008	-0.022	0.014	-0.319	-0.257	-0.063
	Men	-0.139	-0.022	-0.117	-0.151	-0.046	-0.105	-0.028	0.001	-0.028	-0.059	-0.033	-0.026	-0.021	-0.059	0.038	-0.397	-0.168	-0.230
	Women	-0.129	0.025	-0.154	-0.245	0.002	-0.247	0.008	-0.057	0.065	0.044	-0.005	0.049	-0.011	0.002	-0.013	-0.332	-0.265	-0.067
	Private	-0.096	0.000	-0.096	-0.148	-0.049	-0.099	-0.031	-0.013	-0.018	-0.031	-0.004	-0.027	-0.025	-0.018	-0.007	-0.331	-0.233	-0.098
	Private (Men)	0.000	0.000	0.000	-0.182	-0.066	-0.116	0.019	-0.004	0.024	-0.068	-0.008	-0.060	-0.008	-0.006	-0.002	-0.239	-0.162	-0.077
	Private	-0.013	0.044	-0.056	-0.331	-0.096	-0.235	-0.082	-0.072	-0.010	0.018	-0.004	0.022	-0.029	-0.005	-0.024	-0.436	-0.439	0.003
P90/	(Women)																		
<u>p25</u>	Total	-0.236	0.002	-0.238	0.057	0.010	0.048	-0.103	-0.054	-0.049	-0.079	0.029	-0.108	-0.110	-0.015	-0.095	-0.471	-0.074	-0.397
	Men	-0.206	0.017	-0.223	0.021	0.012	0.008	-0.077	0.015	-0.092	-0.146	-0.018	-0.128	-0.077	0.017	-0.094	-0.486	-0.059	-0.427
	Women	-0.267	0.017	-0.284	0.062	-0.011	0.073	-0.100	-0.015	-0.084	-0.112	-0.001	-0.111	-0.113	-0.013	-0.100	-0.531	-0.130	-0.400
	Private	-0.249	0.020	-0.269	0.016	0.145	-0.129	-0.067	0.054	-0.121	-0.110	0.016	-0.126	-0.021	0.071	-0.092	-0.431	0.051	-0.482
	Private (Men)	-0.267	-0.011	-0.256	0.020	0.109	-0.090	-0.024	0.076	-0.101	-0.145	0.007	-0.152	-0.010	0.056	-0.067	-0.425	0.016	-0.442

Table 13 Decom	nosition o	f hourly v	vade wade	inequality	μςίησ Γ)FL meth	ho
1 abic 15. Decomp	position o	I HUUIIY	maze maze	meguanty	using L		JUU

	(women)																		
р75/ р25																			
	Total	-0.135	-0.015	-0.120	0.005	0.067	-0.062	-0.099	0.009	-0.108	-0.096	0.054	-0.150	-0.064	0.077	-0.142	-0.389	0.018	-0.407
	Men	-0.156	-0.051	-0.105	-0.055	-0.028	-0.026	-0.077	0.006	-0.083	-0.105	0.013	-0.118	-0.053	0.052	-0.105	-0.446	-0.035	-0.411
	Women	-0.223	-0.011	-0.212	0.045	0.122	-0.077	-0.163	-0.012	-0.150	-0.065	0.046	-0.110	-0.134	0.025	-0.159	-0.539	0.077	-0.616
	Private	-0.144	0.028	-0.172	-0.048	0.016	-0.064	-0.028	-0.020	-0.008	-0.074	0.014	-0.088	-0.004	0.046	-0.050	-0.298	-0.048	-0.249
	Private (Men)	-0.144	-0.015	-0.129	-0.028	0.010	-0.038	0.006	0.016	-0.010	-0.084	0.029	-0.114	-0.004	0.032	-0.036	-0.254	-0.045	-0.209
	Private (Women)	-0.105	0.029	-0.134	-0.118	0.015	-0.132	-0.042	-0.021	-0.021	-0.090	-0.018	-0.072	-0.035	0.013	-0.048	-0.391	-0.312	-0.079
р75/ р50	· · · · ·																		
	Total	-0.088	0.008	-0.095	0.077	0.077	0.001	-0.072	0.024	-0.095	-0.085	0.015	-0.101	-0.025	0.095	-0.121	-0.192	0.136	-0.329
	Men	-0.091	-0.027	-0.065	0.027	0.008	0.019	-0.068	-0.019	-0.049	-0.049	0.015	-0.063	-0.012	0.083	-0.094	-0.192	0.065	-0.257
	Women	-0.107	-0.004	-0.102	0.115	0.115	0.000	-0.125	0.000	-0.125	-0.039	0.044	-0.083	-0.094	0.041	-0.135	-0.251	0.205	-0.456
	Private	-0.089	0.000	-0.089	0.002	0.031	-0.029	-0.005	-0.023	0.018	-0.027	0.026	-0.053	0.003	0.055	-0.051	-0.115	0.089	-0.205
	Private (Men)	-0.095	-0.015	-0.080	0.008	0.020	-0.012	-0.008	0.000	-0.008	-0.011	0.038	-0.049	0.003	0.040	-0.037	-0.102	0.098	-0.201
	Private (Women)	-0.082	0.006	-0.088	-0.001	0.119	-0.119	-0.001	0.013	-0.014	-0.080	-0.039	-0.041	-0.033	-0.014	-0.019	-0.196	0.019	-0.215
		_												_					

Private -0.265 0.051 -0.316 -0.081 0.154 -0.236 -0.098 -0.010 -0.088 -0.083 0.022 -0.106 -0.089 0.041 -0.130 -0.616 -0.059 -0.557

(Woman)

Source: TurkStat, HLFS 2002-19, Only positive wage earners are included in the sample. Top and bottom 0.1 % is trimmed using hourly wages. Basic endowment specification for probit model includes controls for gender, age, education (6 category), formal contracts, regular working hours and interaction terms for age, gender and education groups.

	0	CCLUI	,															
	2002-0)4		2004-1	2		2012-1	5		2015-1	6		2016-1	9		2002-1	9	
	Total	Comp.	Price	Total	Comp.	Price	Total		Price									
p10	0.067	0.001	0.066	0.084	-0.034	0.118	0.021	-0.017	0.038	0.042	-0.004	0.046	0.011	-0.010	0.021	0.226	-0.033	0.259
p25	0.052	-0.003	0.055	0.024	-0.029	0.053	0.008	-0.010	0.018	0.024	-0.006	0.030	0.003	-0.009	0.012	0.111	-0.055	0.165
p50	0.009	-0.005	0.014	-0.018	-0.011	-0.007	0.000	-0.004	0.003	0.006	-0.002	0.008	0.002	-0.005	0.007	-0.004	-0.032	0.029
p75	-0.026	-0.001	-0.024	-0.062	0.003	-0.065	-0.009	0.002	-0.011	-0.030	0.000	-0.030	0.001	0.002	-0.001	-0.124	-0.003	-0.120
p90	-0.078	0.002	-0.079	-0.055	0.038	-0.093	-0.026	0.017	-0.043	-0.050	0.008	-0.058	-0.011	0.016	-0.026	-0.220	0.032	-0.252
p90 /	-0.144	0.001	-0.145	-0.140	0.072	-0.211	-0.047	0.033	-0.080	-0.092	0.013	-0.105	-0.022	0.025	-0.048	-0.446	0.065	-0.512
p90 /	-0.087	0.007	-0.093	-0.037	0.049	-0.086	-0.026	0.020	-0.046	-0.055	0.011	-0.066	-0.012	0.021	-0.033	-0.217	0.064	-0.281
p50/	-0.058	-0.006	-0.052	-0.103	0.023	-0.125	-0.021	0.013	-0.034	-0.036	0.002	-0.038	-0.010	0.005	-0.014	-0.230	0.001	-0.231
p75/	-0.077	0.002	-0.080	-0.086	0.033	-0.118	-0.017	0.012	-0.029	-0.054	0.006	-0.060	-0.002	0.011	-0.013	-0.234	0.051	-0.286
p90 /	-0.130	0.005	-0.135	-0.079	0.067	-0.146	-0.034	0.027	-0.061	-0.074	0.014	-0.088	-0.014	0.024	-0.038	-0.331	0.087	-0.418

Table 14. Decomposition of hourly residual wage wage inequality using DFL method (Private Sector)

Source: TurkStat, HLFS 2002-19, Only positive wage earners are included in the sample. Top and bottom 0.1 % is trimmed using hourly wages. Basic endowment specification for wage regressions includes controls for gender, age, education (6 category), interaction terms for gender and education groups. We also use same set of controls for the probit model in decomposing hourly residual wages.

We further underline the specific single year minimum wage effects by highlighting the wage effect along the wage distribution before and after the minimum wage shocks. Figure 15 offers a clearer comparison of the two minimum wage shocks. The real gains triggered by the shocks exceeded the median wage and spread even to the 60th decile. There was no real wage increase effect specific to the lower segment in the years following the shock. However, the upper percentiles experienced real wage erosion or stagnation both before and after the shock. We believe that further investigation is needed to understand the factors behind these dynamics.

Figure 15. Comparing Minimum Wage Shocks 2002 vs 2016 Private Sector, Hourly Wages - 2002-05 vs 2014-17

Source: TurkStat, HLFS 2002-19, Only positive wage earners are included in the sample. Top and bottom 0.1 % is trimmed using hourly wages.

Note: Basic endowment specification for probit model includes controls for gender, age, education (6 category), formal contracts, regular working hours and interaction terms for age, gender and education groups.

6. Conclusion

In this paper, we examine the dynamics of wage inequality in Turkey between 2002 and 2019. We document an important decline in wage inequality over the period analyzed. This decline in wage inequality can be explained by several factors. First, real minimum wage hikes in 2004 and 2016 affected wage inequality, especially by increasing wages in lower deciles. Second, a simple supply-demand framework helped to understand how changes in relative supplies may yield lower relative wages by assuming a stable demand curve. Third, for periods and cases where a stable demand curve was not realistic, between-industry shifts in relative demand filled the gap to explain the observed wage dynamics. Finally, the stagnation of post-secondary graduate wages is an important component of the explanation for the observed wage dynamics.

The impact of the minimum wage adjustments in 2004 and 2016 is important in understanding decreasing wage inequality In Turkey. We use decomposition analysis developed by [DiNardo et al., 1996] to provide evidence that the wage (pricing) effect exceeded median hourly wages and exhibited spill-over effects, even for wage earners above median. In Turkey, it seems that minimum wage adjustments replaced the role of central wage bargaining. It is therefore important to see whether other emerging countries have had similar experiences.

We find that, when a stable demand curve seems unrealistic, the likely explanation is structural transformation (strong between-industry shifts in relative demand) rather than skill-biased technological change (which would require strong between-industry shifts in relative demand). Given the evidence on skill-biased technological change, one wonders whether its lack in Turkey can be explained by the surge in the number of universities since 2005, which has reduced the quality of skills offered to fresh college graduates in recent years. Our preliminary findings show that this may be the case given the stagnation of post-secondary graduate wages in recent years. However, more detailed and systematic research is needed to provide convincing evidence on this question.

References

- [Acemoglu and Autor, 2011] Acemoglu, D. and Autor, D. (2011). Skills, tasks and technologies: Implications for employment and earnings. In *Handbook of labor economics*, volume 4, pages 1043–1171. Elsevier.
- [Aktu et al., 2021] Aktuğ, E., Kuzubaş, T. U., and Torul, O. (2021). Heterogeneity in labor income profiles: evidence from Turkey. *Empirical Economics*, 60(5):2557–2587.
- [Bak et al., 2018] Bakış, O., Polat, S., and Ulus, M. (2018). Türkiye'de çalışılan saatlerin dağılımı ve değişimi. Efil Journal of Economic Research, 1(4):108–127.
- [Bakis and Polat, 2015] Bakis, O. and Polat, S. (2015). Wage inequality in Turkey, 2002–10. *Economics of Transition*, 23(1):169–212.
- [Card and DiNardo, 2002] Card, D. and DiNardo, J. E. (2002). Skill-biased technological change and rising wage inequality: Some problems and puzzles. *Journal of labor economics*, 20(4):733–783.
- [DiNardo et al.,1996] DiNardo, J., Fortin, N. M., and Lemieux, T. (1996). Labor market institutions and the distribution of wages, 1973-1992: A semiparametric approach. *Econometrica: Journal of the Econometric Society*, pages 1001–1044.
- [Eksi and K, 2015] Eksi, O. and Kırdar, M. (2015). Emek gelirlerinin ve eşitsizliğinin türkiye için bir analizi: 2002-2011. *Iktisat Isletme ve Finans*, 30(353):09–44.
- [Fortin and Lemieux, 1997] Fortin, N. M. and Lemieux, T. (1997). Institutional changes and rising wage inequality: is there a linkage? *Journal of Economic Perspectives*, 11(2):75–96.
- [Fortin et al., 2011] Fortin, N., Lemieux, T., and Firpo, S. (2011). Decomposition methods in economics. In *Handbook of labor economics*, volume 4, pages 1–102. Elsevier.
- [Gabaix and Landier, 2008] Gabaix, X. and Landier, A. (2008). Why has ceo pay increased so much? *The Quarterly Journal of Economics*, 123(1):49–100.
- [I et al., 2020] Işık, E., Orhangazi, Ö., and Tekgüç, H. (2020). Heterogeneous effects of minimum wage on labor market outcomes: A case study from turkey. *IZA Journal of Labor Policy*, 10(1).
- [Kahveci and Pelek, 2021] Kahveci, M. and Pelek, S. (2021). Asgari ãœcret ve politika: Asgari ãœcreti seã§imler mi belirliyor? *Amme İdaresi Dergisi*, 54:99–131.
- [Katz and Autor, 1999] Katz, L. F. and Autor, D. H. (1999). Chapter 26 changes in the wage structure and earnings inequality. volume 3 of *Handbook of Labor Economics*, pages 1463 – 1555. Elsevier.
- [Katz and Murphy, 1992] Katz, L. F. and Murphy, K. M. (1992). Changes in relative wages, 1963–1987: supply and demand factors. *The quarterly journal of economics*, 107(1):35– 78.
- [Koand Visser, 2009] Koçer, R. G. and Visser, J. (2009). The role of the state in balancing the minimum wage in Turkey and the USA. *British journal of industrial relations*, 47(2):349– 370.

- [Lemieux, 2006] Lemieux, T. (2006). Increasing residual wage inequality: Composition effects, noisy data, or rising demand for skill? *American Economic Review*, 96(3):461–498.
- [Meschi et al.,2011] Meschi, E., Taymaz, E., and Vivarelli, M. (2011). Trade, technology and skills: Evidence from turkish microdata. *Labour Economics*, 18:S60–S70.
- [OECD, 2019] OECD (2019). Government at a Glance 2019.
- [Popli and Y, 2017] Popli, G. and Yılmaz, O. (2017). Educational attainment and wage inequality in Turkey. *Labour*, 31(1):73–104.
- [Tamkoand Torul, 2020] Tamkoç, M. N. and Torul, O. (2020). Cross-sectional facts for macroeconomists: wage, income and consumption inequality in turkey. *The Journal of Economic Inequality*, pages 1–21.
- [Tunalet al., 2017] Tunali, İ., Kırdar, M. G., and Dayıoğlu, M. (2017). Female labor force participation in turkey: A synthetic cohort analysis, 1988–2013. TUBITAK-Project No. 112K517.
- [Visser, 2019] Visser, J. (2019). ICTWSS database. version 6.1. Amsterdam Institute for Advanced Labour Studies (AIAS).