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1 Introduction:

The Sustainable Development Goal 13 (SDG13) is concerned with taking urgent action to combat
climate change and its impacts. Climate change is an inevitable global challenge with long-term
environmental, social and economic implications and damages. The year 2017 was one of the
three warmest years on record; it was 1.1 degrees Celsius above the pre-industrial period. Concur-
rently, the world continues to experience rising sea levels, extreme weather conditions as well as
increasing concentrations of greenhouse gases (IPCC, 2018). This calls for urgent and accelerated
action by countries to mitigate the impacts of climate change on food production, health, energy
consumption and production, increasing sea levels, etc, as they implement their commitments to
the Paris Agreement on Climate Change. To undertake appropriate actions, researchers are inter-
ested in understanding and quantifying the impacts of the different anthropogenic activities on the
drivers of climate change (Pachauri et al., 2014).

Greenhouse gases warm the earth’s climate through creating what is known by the ‘greenhouse ef-
fect’. These gases, including carbon dioxide (CO2), nitrous oxide, methane, and others, are essen-
tial in sustaining a suitable temperature for the planet. However, since the Industrial Revolution,
these greenhouse gas emissions have rapidly increased simultaneously with energy-production
leading to climate change. Carbon dioxide (CO2) is the primary greenhouse gas emitted through
human activities. CO2 emissions stem mainly from burning oil, coal and gas for energy use, burn-
ing wood and waste materials, and from industrial processes such as cement production. China is
the world’s largest emitter, emitting more than one-quarter of the global emissions, followed by
the United States of America and Europe, emitting 17-18% of global emissions each, and finally
Africa and South America, emitting 3-4% of global emissions each (Ritchie and Roser, 2019).

Electricity has been identified as the main source of global CO2 emissions. For example, elec-
tricity production is accountable to about 27.5% of total CO2 emissions in Europe (EEA, 2018).
Therefore, the electricity sector in Europe is a highly regulated market due to its large abatement
potential. However, this is mainly attributed to the methods used to produce electricity, such as
coal, natural gas, uranium, sum or renewable resources. For this reason, the choice of electric
generation technology plays a decisive role in reducing its environmental impacts. For instance,
China relies primarily on coal for electricity, which has carbon impact 20 times greater than re-
newables (IEA, 2016). Therefore, although one may expect a strong positive relationship between
income, economic growth and industrial development and CO2 emissions, many developed and
rich countries have reached relatively lower carbon footprint. In an illustration of the Environ-
mental Kuznets Curve (EKC) Model named after Kuznets (1955), which was first observed by
Grossman and Krueger (1991, 1995) when they were exploring the influence of the North Amer-
ican Free Trade Agreement (NAFTA) on the environment. For instance, Portugal, France and the
United Kingdom have per capita emissions that are lower than their neighbours with similar stan-
dards of living such as Germany, the Netherlands, or Belgium (Ritchie and Roser, 2019). This is
because a much higher share of electricity in those countries is produced from nuclear and renew-
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able sources. Thus, although prosperity is regarded a primary driver of CO2 emissions, policy and
technological choices definitely make a difference.

The link between global climate change and emissions generated from non-renewable energy re-
sources is proved by Khan and Arsalan (2016). Following from this, it is important to investigate
the changes over time in the CO2 emissions across countries and how the relationship between
CO2 emissions and electricity consumption including both residential and industrial sectors and
the country’s economic growth and development has changed over the years. This will help pro-
viding insights about the future trends of CO2 and its potential impacts on climate change. This in
turn should help the plan for action towards reducing the greenhouse gases resulting from electric-
ity production.

In the literature, a fewer number of researches are conducted for the MENA region relative to
developed countries though the former produces about 7% of the worldwide greenhouse gases
(Sileem, 2015). The MENA region emissions grew up by 88% in the last 20 years. Pal and Eltahir
(2016) suggested that by 2070, the Middle East and North Africa (MENA) region could suffer
heat waves beyond the limit of human survival. Ozcan (2013), Farhani et al. (2014) and Gorus
and Aslan (2019) used panel data analysis to examine the relationship of energy consumption,
economic growth and CO2 emission in the MENA region. The results of these studies were not
consistent; some found a negative impact of energy consumption on CO2 emissions in the long
run and others found contrasting results. To gain more insights about the situation in the MENA
region, this paper focuses on identifying the CO2 emissions trends and the evolution of impacts of
economic growth and energy consumption on CO2 emissions in the MENA region.

This paper aims at (1) assessing the variations in the trends of CO2 emissions and electricity con-
sumption across countries worldwide and the changes over time, (2) investigating the changes over
time in the impact of electricity consumption on CO2 emissions worldwide with a particular focus
on the countries in the MENA region, and (3) evaluating the differences in the trends of CO2 emis-
sions across the different income groups of countries. To achieve these aims, this paper employs
functional data methods for the analysis of CO2 emissions trends. Functional data analysis has
grown into a comprehensive and useful field of statistics which provides a convenient framework
to describe, model and analyse time series data for different individuals. Up to our knowledge,
functional data analysis has not been employed before to study the patterns and relationships of
CO2 emissions across the globe. All studies that evaluated the impacts of energy consumption and
economic growth on CO2 emissions are different than this paper due to using either different data,
time periods, model formulation or methodology.

The remainder of the paper is organised as follows. Section 2 describes the data available for the
study. Section 3 motivates and explains the functional data methods used in the analysis of the
CO2 emissions and the electricity consumption data described in Section 2. This is followed by
a discussion of the results in Section 4. Finally, in Section 5, the paper concludes with the main
findings and policy implications of the study.
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2 Data Description:

As mentioned above, this paper aims at investigating the variations in the trends of CO2 emissions
across the globe over time as well as studying the nature of the changes in the relationship between
electricity consumption and the carbon dioxide emissions over time across the globe in general
and in the Middle East and North Africa (MENA) region in particular. Following from this, annual
data on the carbon dioxide emissions (kt), electric power consumption (kWh) per capita 1, popula-
tion size and percentage growth rate of gross domestic product (GDP) per capita are obtained from
the World Bank data (https://data.worldbank.org/) for almost each country across the
globe over the period 1975 - 2014. In addition, information on the World Bank country classi-
fications based on income level is obtained from (https://datahelpdesk.worldbank.
org/knowledgebase/articles/906519). However, only 108 countries worldwide have
a reasonable amount of data available for the analysis. Countries were selected on the basis of
having at most one third of the data for each variable missing.

3 Methodology:

Linear trends are often used to model the rate of change in the CO2 emissions (Hosseini, et al.,
2019) and linear regression model is one of the common methods used to explain the correlation
between CO2 emissions and related economic sector variables (Choi and Abdullah, 2016). To
examine the effect of economic sector growth on CO2 emission changes across countries Aye and
Edoja (2017) employed a panel data analysis. Unfortunately, the linear trend appears not to be
always a sensible summary of the trend. A linear trend can miss important features of the trend,
such as curvature, and is very sensitive to the start and finish times (Henderson, 2006). In addition,
when a linear trend is used universally to model the trends in large number of individuals there
will always be some subjects where it performs well and others where it is less adequate which
makes the results incomparable (Henderson, 2006). Following from this, smooth functions have
been now widely used for modelling non-linear trends. One objective of this paper is to explore
the potential of using functional data analysis to analyse the variations and the differences in CO2

emissions over time and facilitate comparisons in trends across the different countries.

In econometrics, data collected over time on the same individuals are often analysed using panel
data analysis. Recently, functional data analysis (FDA) has grown into a comprehensive and useful
field of statistics that can provide a sensible alternative to panel data analysis in many situations
(Kneip, et al., 2004). FDA is a very popular technique used for analyzing data collected as multiple
time series. In FDA, each time series is viewed as observations of a continuous function collected

1According to the world bank, the electric power consumption per capita (kWh) is the production of power plants
and combined heat and power plants less transmission, distribution, and transformation losses and own use by heat
and power plants, divided by midyear population.
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at a finite series of time points (Ramsay and Dalzell, 1991). In this setting, the fundamental unit
of interest is the entire function or curve constructed from the observations collected over time
without being concerned about the temporal correlations between the measurements of the same
individual.

In FDA, the underlying curves (functions) are assumed to be smooth. However, in practice, data
are observed discretely in time (for instance, here, data are observed annually) and hence the first
and most crucial step in FDA is to construct the smooth functional curves from their corresponding
discrete observations. A popular method to represent smooth functions y(t) over time t ∈ T is
through linear combinations of known basis functions as follows:

y(t) =
K∑
k=1

ckφk(t) = c>Φ(t)

where φk(t) are known basis functions that are defined over the same range as y(t) and the coef-
ficients ck are estimated by minimising the sum of squared distances to the set of discrete points
y1, . . . , yn observed at the the time points t1, . . . , tn that underlie the continuous curve y(t). In the
vector-matrix notation, Φ(t) is the vector of all K basis functions and c is a vector that contains
all K coefficients. There are multiple choices if basis functions including polynomials, regression
splines, Fourier series and wavelets. The choice of the basis function is based on the characteris-
tics of the data and the nature of the smooth curve (Ramsay and Silverman, 1997). For instance, a
Fourier basis is particularly designed for periodic data, whereas a B-splines basis (De Boor, 2001)
is a very popular choice for smoothing non-periodic data with strong local features. The degree of
smoothness imposed on the curve y(t) is controlled by the number K of basis functions. A large
K implies more flexibility and smoothness in the estimated curve. Selecting the optimal number
of basis functions is a complicated discrete process. In contrast, a roughness penalty approach may
offer greater control of the smoothness through seeking a smooth function y(t) that minimises the
sum of squared distances to the observed y1, . . . , yn subject to a roughness penalty on y(t) that
ensures that the function is suitably smooth (Wood, 2006).

Most of the classical statistical methods like the principal component analysis, cluster analysis,
factor analysis and linear regression have been extended to the context of functional data. Ramsay
and Silverman (1997) describe and provide many examples of the functional data formulation to
these common statistical analysis methods. In this paper, we shall describe briefly the functional
principal component analysis and functional linear regression which we will use to describe the
trends in CO2 emissions and its relationship with electricity consumption and analyse their varia-
tions across the globe.
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3.1 Functional principal component analysis

Functional principal components analysis (FPCA) is a very useful exploratory tool for summaris-
ing and extracting the features and primary sources of variation in a set of curves yi(t), i = 1 . . . , N

after adjusting for the average smooth curve ȳ(t). We focus on the mean corrected curves zi(t) =

yi(t)−ȳ(t), i = 1 . . . , N as we are interested in characterising the main deviations of the yi(t) from
the average curve. The first principal component ξ1(t) is considered as a loading function for the
zi(t) that exists over the same range T and accounts for the maximum variation. With analogy to
tradition PCA, ξ1(t) is chosen so that it yields the maximum variability in the functional principal
component (FPC) scores:

s1i =

∫
T
ξ1(t)zi(t)dt, i = 1, . . . , N

subject to the normalisation constraint
∫
T ξ1(t)

2dt = 1. Subsequent FPCs are defined in a similar
way subject to extra orthogonality constraints. For example, the second FPC must be orthogonal
to the first FPC in the sense that

∫
T ξ1(t)ξ2(t)dt = 0.

With analogy to traditional PCA, the loadings’ functions ξ(t) correspond to the eigenvectors of the
variance-covariance matrix of the raw data. Thus, each ξ(t) represents a solution to the following
eigen-equation:

∫
v(s, t)ξ(t)dt = ρξ(s) (1)

where v(s, t) is the covariance function defined by:

v(s, t) =
1

N

N∑
i=1

zi(s)zi(t) (2)

Representing the eigenfunctions ξ(t) and the curves yi(t) or equivalently zi(t) in terms of their
basis expansions reduces the covariance function (2) and the eigen-equation (1) to matrix form
that yields a tractable solution, see Ramsay and Silverman (1997) for more details.

3.2 Functional linear regression

With analogy to classical linear models, functional linear regression and analysis of variance are
useful techniques for explaining the variability in a variable in terms of other observed quantities.
A linear model is considered functional if the response variable is functional and the explanatory
variables are scalar, or if the response variable is scalar and one or more explanatory variables

6



are functional, or if both the response and one or more explanatory variables are functional. In
all these cases, the regression coefficients, say βj , are no longer scalar but functions, denoted by
βj(t). In this paper, we will be interested in two of these cases. The first case is where we have
a functional response and we aim at investigating whether we can describe variation in the curves
through country-level covariates. That is, we are interested in models of the form:

y(t) = Xβ(t) + ε(t), (3)

where y(t) is the vector of the response functions (y1(t), . . . , yN(t))>, ε(t) is the vector of the
residual functions and X denotes the design matrix of q covariates that describe the N countries.
These might include the overall mean and single or various grouping variables. β(t) is thus a
vector of the q functional objects defined over the same range as the yi(t). If the overall mean
profile is of interest then the design matrix X will include a column of ones and hence β(t) will
include a functional object that describes the average profile µ(t). At a given time point t, this
model is similar to a traditional one-way ANOVA model.

In this paper, we will use the above model (3) such that y(t) is the vector of the estimated CO2

emissions’ functions (y1(t), . . . , yN(t))> over the period 1975-2014 for the N countries across the
globe; whereas X is an N × 4 design matrix with a column of ones corresponding to an overall
mean profile and three columns corresponding to the three income groups identified by the world
bank labelled as low, middle and high income groups. Thus, β(t) is a vector of length 4 such that
β1(t) describes the overall mean profile of CO2 emissions and βj(t), j = 2, 3, 4 is the specific
effect of group j measuring the deviations of group j from the overall mean.

With analogy to linear regression, the vector of functional regression coefficients β(t) can be
estimated through the minimisation of the following least squares criterion:

∫
T
‖y(t)−Xβ(t)‖2dt

Using the same basis expansion for the original curves y(t) and the estimated coefficients functions
β(t) is useful for reducing the functional linear model to a tractable matrix form, see Ramsay and
Silverman (1997).

Statistical inference about the model parameters including F-test and R-squared values have also
been extended to the functional context. Such inferential diagnostics are useful for identifying the
significance of covariates and explaining how the variation in the set of curves changes over time.

The second case of interest in this paper is the concurrent model where both the response and the
covariates are functional such that:

y(t) = X(t)β(t) + ε(t),
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X(t) is the design matrix where each column corresponds to a functional covariate. Based on this
representation, everything in terms of the coefficients estimation and inference proceed the same
as in the functional ANOVA model. Here, we will use this model to describe how the relationships
between the per capita electric power consumption and per capita GDP growth (as covariates) and
CO2 emissions (as a response) have changed over the years. Following from this, the matrix X(t)

will contain the 2 vectors of functional covariates in addition to the vector that corresponds to the
intercept (overall mean) function. For more details, see Ramsay and Silverman (2005).

4 Results and Discussion

In this paper, we examine the trends in CO2 emissions and its relationship with electricity con-
sumption over the period from 1975 to 2014. As previously mentioned, data from 108 countries
across the globe are available. Information on the income group of each country belongs to is also
available based on the world bank classification in 2018. Fig.1 displays the raw annual data for
both the CO2 emissions per capita and the electric power consumption per capita on the original
scale (panels (a) & (d)).
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Figure 1: The raw annual data for both the CO2 emissions (in mt/per capita) and the electric power
consumption (in Kwh/per capita) on the original scale (panels (a)&(d)) and the log scale (panels
(b)&(e)) as well as the corresponding estimated smooth time trends (panels (c)&(f)).

It is clear from Fig.1 that there exists a large variability in the data and therefore a log-transformation
is needed to adjust for the high-skewness in the data. The middle panels of Fig.1 illustrate the time
trends for both the CO2 emissions and the electric power consumption on the log-scale. The smooth
time trends for each of the CO2 emissions and electricity variate at each country are then obtained
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Figure 2: The average trend of CO2 emissions (top panels) plus and minus a multiple of the
corresponding first (a) and second (b) functional principal components and the average trend of per
capita electric power consumption (bottom panels) plus and minus a multiple of the corresponding
first (c) and second (d) functional principal components.

using a cubic B-splines basis expansion with 10 terms. Both the degree of the B-splines and the
number of basis functions are chosen such that they ensure enough flexibility in the estimated
trends without missing important local features; see Fig.1-panels (c) & (f).

Firstly, the functional principal component analysis detailed in Section (3.1) is used to identify
the primary modes of variations in the trends of CO2 emissions and electric power consumption
across the different countries. Fig. 2 shows the first 2 functional principal components which
account collectively for 99% of the variability in CO2 emissions across the countries. The figure
shows similar results for the electric power consumption. The first FPC which accounts solely for
almost 97.5% of the variability, describes the deviations from the average increasing trend in CO2

emissions over the period 1975 - 2014. A country with a positive score on this first PC has higher
level of either CO2 emissions or electric power consumption than average. It is evident from panels
(a) & (c) that the average CO2 emissions and the average per capita electric power consumption
across all countries have been increasing over the years. Whereas, the second FPC which accounts
for 2% of the variability describe the contrast between the period 1975-1990 and post 1990 for
both variables. A country with a high positive score on the second PC had relatively lower CO2

emissions and per capita electric power consumption than average before 1990 but considerably
higher CO2 emissions after 1990. This reflects a characteristic of the developing countries and
newly industrialized countries. In contrast, a country with a lower score had higher CO2 emissions
pre 1990 relative to post 1990, which mainly characterizes the developed countries with the most
advanced technology.
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Figure 3: Scatter plots of the scores of the first FPC versus that of the second FPC for the CO2

emissions (left) and the per capita electric power consumption (right). The red, green and blue
colours refer to low, middle and high income groups, respectively.
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Figure 4: Scatter plots of the scores of the first FPC versus that of the second FPC for the CO2

emissions (left) and the per capita electric power consumption (right). The red colour refers to the
MENA region countries.
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Fig.3 provides a better explanation and justification of the discrepancies among countries. The
right panel of the figure highlights the relatively higher consumption of electricity over the years in
the high-income group of countries in contrast to the low-income countries. Despite this high elec-
tric power consumption, the highly developed countries including most of the European countries
in addition to USA, Canada and Japan have managed to reduce their emissions from the carbon
dioxide over the years especially after 1990 (they have negative scores on the second FPC of CO2

emissions) by reducing their absolute per capita electric power consumption. It should be noted
here that this reduction in CO2 emissions can not only be attributed to the lower absolute elec-
tric power consumption but also to the substantial growth of electricity generation from renewable
sources, for instance, in Europe from 13% in 1990 to 31% in 2017. On the contrary, in addition to
China and India, the major oil producing countries including Kuwait, Saudi Arabia, United Arab
Emirates and Bahrain appear to be emitting higher levels of carbon dioxide than global average as
they continually inefficiently consume higher volumes of electricity. It is also obvious from Fig.4
that the MENA region countries are emitting CO2 that relatively exceeds the global average espe-
cially after 1990, simultaneously with more per capita electric power consumption post 1990. This
result probably highlights the consequences of development, where fossil fuels (the main source
of CO2 emissions) are the most dominant and cheapest form of energy.

Secondly, the functional analysis of variance portrayed in Section (3.2) is employed to study the
differences in CO2 emissions trends across the 3 income groups. Fig. 5 illustrates the overall mean
effect (panel (a)) as well as the income groups specific effects (panels (b-d)) estimated from the
data. As identified in the FPCA, the overall average CO2 emissions has been increasing over the
years. It is also clear from the figure that the low-income group countries have consistently lower
CO2 emissions (than the average) over the years (see panel (b) where the red solid curve is below
the zero line). On the contrary, the high income countries have higher CO2 emissions that are
decreasing over the years, relative to the average CO2 emissions across all countries. This could be
seen as a manifestation of the environmental Kuznets curve model, which is based on the transition
that occurs to countries as they move along the different stages of development. However, there is
no strong evidence for differences between the mean CO2 emissions across the 3 income groups.

Finally, a concurrent model, see Section (3.2), is fitted to study the change over time in the rela-
tionship between the per capita CO2 emissions and the per capita electric power consumption and
GDP growth. This model is found explaining on average more than 80% of the variability in the
CO2 emissions over the whole study period. It is obvious from panels (b) & (c) of Figure 6 that
the influence of both the per capita electric power consumption and the per capita GDP growth on
the per capita CO2 emissions has been varying over the years. Panel (b) indicates that although
the CO2 emissions and electric power consumption are positively related (curve is above the zero-
line), the influence of electric power consumption on CO2 emissions has significantly dropped
from 1990 to 2006 then slightly increased again between 2006 and 2014. This result may be due
to the substantial growth of electricity generation from renewable sources starting the 1990 where
renewable energy is not only known to reduce greenhouse gas emissions but also simultaneously
create social and economic benefits (Owen, 2006; Pfeiffer and Mulder, 2013). However, it is un-
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Figure 5: The estimated overall mean effect (a) and the low, middle and high income group specific
effects (b-d) along with their corresponding standard error bands (dashed lines).

able to catch up with increases in energy demand owing to rapid increase in income and population
(Devabhaktuni et al., 2013). Leading to filling the gap of energy consumption growth by natural
gas driving up the CO2 emissions post 2006 (BP, 2019). The fitted model shows also a significant
positive relationship between CO2 emissions and GDP growth; see Fig. 6 - panel (c). But, it is no-
ticed that the influence of the per capita GDP growth has been increasing since 1990 up until 2006
where it started to drop slightly. Taking the shape of an inverted U suggesting that, environmental
degradation and pollution begin to increase in early stages of economic growth. Then they tend to
decrease, due to realizing the importance of environmental quality (Kuznets, 1955).

The same above concurrent model is fitted only to 11 countries of the MENA region, for which
data from 1975 to 2014 on per capita GDP growth, electric power consumption and CO2 emissions
are available. These 11 countries are Algeria, Bahrain, Egypt, Iraq, Iran, Jordan, Morocco, Oman,
Saudi Arabia, Tunisia and United Arab Emirates. This model enables us to evaluate the differences
between the MENA region countries and the rest of the countries. The results of this model are dis-
played in Fig. 7 which shows that the CO2 emissions per capita remained almost constant until late
1990’s where it started to decrease simultaneously with an increase in the effect of GDP growth.
This is marking the early stages of EKC where comparing the MENA region growth performance
prior and post the 1990s a higher average real GDP growth is witnessed due to undertaken reforms.
In Egypt, for example, the 1990s mark a key turning point in Egypt’s modern economic history
with the initiation of an economic reform and structural adjustment program. However, the average
influence of electric power consumption on CO2 emissions though positive remained constant over
the years. This constant effect might be attributed to the technology used in power generation or a
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Figure 6: The estimated intercept function (left) and the estimated regression coefficient functions
of the concurrent model for the effects of per capita electric power consumption (middle) and per
capita GDP growth (right) on per capita CO2 emissions, along with their standard error bands.
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Figure 7: The estimated intercept function (left) and the estimated regression coefficient functions
of the concurrent model for the effects of per capita electric power consumption (middle) and per
capita GDP growth (right) on per capita CO2 emissions, along with their standard error bands, for
the MENA region countries

result of modelling both oil-rich countries and middle income MENA countries in the same model.
The same figure also shows the increased variability/gaps between the countries of the same region
in the more recent years. This could be attributed to (1) the migration of dirty industries to some
of the low and middle income countries of the MENA region; (2) the introduction of renewables
in the high-income countries in the region; and/or (2) the political economy in the region with the
invasion of Iraq and the Arab spring in Egypt and Tunisia. However, further investigation is due in
that matter.
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5 Conclusion and Policy Implications

This paper has employed a functional data analysis approach to analyse the changes over time
and discrepancies across countries in CO2 emissions as well as the evolution of impacts of eco-
nomic growth and energy consumption on these emissions. In addition to the global analysis,
the paper has particularly focused on assessing these relationships and trends in the MENA re-
gion. Functional data analysis appeared to be a powerful exploratory technique for understanding
and visualising the differences in CO2 emissions and electric power consumption trends between
countries.

Based on the above results, it can be concluded that the CO2 emissions is positively related to
the country’s income level, though there is no enough evidence for differences between the aver-
age emissions of the three income groups. Nevertheless, the impact of economic growth on CO2

emissions is declining on average over time suggesting an inverted U-shape of the EKC and high-
lighting the strong effect of highly developed countries. The highly developed countries including
USA, Canada, Japan and most of the European countries have CO2 emissions’ levels above av-
erage, they managed to reduce their emissions on the global and individual levels over the years
starting from sometime during the 1990’s. This is likely owing to both improved energy and tech-
nology efficiency, and increases in the capacity of renewables (Du et al., 2017; EEA, 2019). In
contrast, the global average CO2 emissions in the MENA region is increasing simultaneously with
increases in the per capita electric power consumption and GDP growth. We also found that this
impact of economic growth on CO2 emissions is rather increasing over time since late 1990’s in the
MENA region highlighting an early stage of the EKC. This all, in turn, suggest that the MENA re-
gion countries have to undertake serious acts and policies to reduce their carbon dioxide footprints
simultaneous with their industrial and economic development. This can be achieved by encour-
aging the use of more energy efficient technologies and increasing the capacity of renewables to
generate electric power. Developing countries face several policy, regulatory and technical hur-
dles to successfully adopt renewable energy technologies. In addition, the initial cost of financing
and installing renewable energy infrastructure has proven to be a substantial hurdle. Therefore,
governments should allocates more opportunities for entrepreneurship and new businesses to find
innovative solutions for a cleaner environment.

Future work could involve using the functional data analysis approach to predict the electricity
demand in the MENA region which may not follow a strictly linear trend. This then helps quantify
the gap between electricity demand and supply, as a large gap between the supply and demand
in the energy sector may suggest an energy crisis. Therefore, planning and investment in both
energy efficient and carbon efficient technologies and resources are necessary to fulfill increased
electricity demand while keeping the amount of CO2 emissions under control.
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