

Assessing the changes in the impacts of electricity on climate change over time and across countries: A Functional Data Analysis Approach

Amira Elayouty[†], Hala Abou-Ali^{*}

[†]School of Mathematics and Statistics, University of Glasgow. *Department of Statistics, FEPS, Cairo University.

March 29-31, 2020

ERF 26th Annual Conference

SDG13

Taking urgent action to combat climate change and its impacts.

• To mitigate the impacts, we need to understand and quantify the impacts of human activities on the drivers of climate change.

- To mitigate the impacts, we need to understand and quantify the impacts of human activities on the drivers of climate change.
- The rise in global average temperature is mainly attributed to an increase in greenhouse gas emissions, especially CO₂.

• Since the industrial revolution, greenhouse gas emissions have increased **exponentially and simultaneously** with energy-production.

• Since the industrial revolution, greenhouse gas emissions have increased **exponentially and simultaneously** with energy-production.

- CO₂ emissions primarily stems from burning fossil fuels e.g. oil, coal and gas for energy use.
- China is the world's largest emitter (25%), followed by the USA (18%).

- Electricity is considered the main source of global CO₂ emissions; but this is also attributed to the methods used to produce electricity.
- Economic growth and industrial development are not the only drivers of CO₂ emissions but also **policy and technology choices**.

For 108 countries from 1975-2014:

- Annual carbon dioxide emissions (kt) per capita.
- Annual electric power consumption (kWh) per capita.

Introduction Data Functional Data Analysis Results Conclusion

Assess the discrepancies in the trends of CO₂ emissions and electricity consumption over time across countries.

- Assess the discrepancies in the trends of CO₂ emissions and electricity consumption over time across countries.
- Evaluate the differences in the trends of CO₂ emissions between the different income groups of countries.

- Assess the discrepancies in the trends of CO₂ emissions and electricity consumption over time across countries.
- Evaluate the differences in the trends of CO₂ emissions between the different income groups of countries.
- Investigate the changes over time in the relationship between electricity consumption and CO₂ emissions, especially in the MENA region.

- Assess the discrepancies in the trends of CO₂ emissions and electricity consumption over time across countries.
- Evaluate the differences in the trends of CO₂ emissions between the different income groups of countries.
- Investigate the changes over time in the relationship between electricity consumption and CO₂ emissions, especially in the MENA region.

Using Functional Data Analysis

Why Functional Data Analysis?

Why Functional Data Analysis?

Panel Data Analysis

- Handle data from a sample of individual units; each unit observed repeatedly over time.
- **Inefficient** when relationships between the response and the explanatory variables vary over time or exhibit a complex pattern.

Why Functional Data Analysis?

Panel Data Analysis

- Handle data from a sample of individual units; each unit observed repeatedly over time.
- **Inefficient** when relationships between the response and the explanatory variables vary over time or exhibit a complex pattern.

Functional Data Analysis

- Useful when dealing with highly **heterogeneous** data; allows each subject to determine its own functional structure.
- Able to handle **time-varying** relationships among variables.
- Powerful in visualizing and capturing complex data patterns.

In FDA, data are viewed as the realizations of a functional stochastic process $X_i(t) : i \in \mathbb{Z}, t \in \mathcal{T}$, where:

- *i* is a **discrete** parameter denoting **country**.
- *t* is a **continuous** parameter denoting **time**.
- $X_i(t)$ is obtained by smoothing raw data.

In FDA, data are viewed as the realizations of a functional stochastic process $X_i(t) : i \in \mathbb{Z}, t \in \mathcal{T}$, where:

- *i* is a **discrete** parameter denoting **country**.
- *t* is a **continuous** parameter denoting **time**.
- $X_i(t)$ is obtained by smoothing raw data.

Discrete data						
$x_{1,1}$	$x_{1,2}$	• • •	$x_{1,m}$			
$x_{2,1}$	<i>x</i> _{2,2}	• • •	$x_{2,m}$			
÷	÷	÷	÷			
:	:	:	÷			
•	•	·	•			
$\chi_{n,1}$	$x_{n,2}$	• • •	$\chi_{n,m}$			
set of points in \mathbb{R}^p						
$p < \infty$						
	$ \begin{array}{c} \mathbf{D} \\ x_{1,1} \\ x_{2,1} \\ \vdots \\ x_{n,1} \\ \text{set } \end{array} $	Discrete $x_{1,1}$ $x_{1,2}$ $x_{2,1}$ $x_{2,2}$ \vdots \vdots \vdots \vdots \vdots \vdots $x_{n,1}$ $x_{n,2}$ set of point $p < 0$	Discrete data $x_{1,1}$ $x_{1,2}$ $x_{2,1}$ $x_{2,2}$ \vdots \vdots \vdots \vdots \vdots \vdots $x_{n,1}$ $x_{n,2}$ set of points in \mathbb{R} $p < \infty$			

In FDA, data are viewed as the realizations of a functional stochastic process $X_i(t) : i \in \mathbb{Z}, t \in \mathcal{T}$, where:

- *i* is a **discrete** parameter denoting **country**.
- *t* is a **continuous** parameter denoting **time**.
- $X_i(t)$ is obtained by smoothing raw data.

Discrete data						
country ₁ country ₂	$x_{1,1} \\ x_{2,1}$	$x_{1,2} \\ x_{2,2}$	 	$x_{1,m}$ $x_{2,m}$		
:	:	:	:	:	=	
country _n	$x_{n,1}$	$x_{n,2}$		$x_{n,m}$		
	set	of point $p < q$	ts in \mathbb{F}	p ^p		

Introduction Data Functional Data Analysis Results Conclusion

In FDA, data are viewed as the realizations of a functional stochastic process $X_i(t) : i \in \mathbb{Z}, t \in \mathcal{T}$, where:

- *i* is a **discrete** parameter denoting **country**.
- *t* is a **continuous** parameter denoting **time**.
- $X_i(t)$ is obtained by smoothing raw data.

Discrete data					Functional data		
country ₁	$x_{1,1}$	$x_{1,2}$		$x_{1,m}$	$x_1(t)$		
country ₂	$x_{2,1}$	<i>x</i> _{2,2}	•••	$x_{2,m}$	$x_2(t)$		
:	:	:	:	:	:		
•	•	·	·	•	•		
•	•	•	•	•	\Rightarrow .		
:	:	:	:	:	:		
country _n	$x_{n,1}$	$x_{n,2}$		$x_{n,m}$	$x_n(t)$		
set of points in \mathbb{R}^p				set of functions on ${\cal T}$			
set of points in it				bet of functions on ,			
$p < \infty$			∞	$p = \infty$			

• Functional Principal Component Analysis

• Identify the primary sources of variations in a set of curves.

 \implies What are the sources of differences between countries' trends?

• Functional Principal Component Analysis

• Identify the primary sources of variations in a set of curves.

 \implies What are the sources of differences between countries' trends?

• Functional Regression

• Explain how relationships between (functional) response and explanatory vars varied over the functional domain (time).

 \implies How the relationship between electricity consumption and CO₂ emissions evolved over time?

FPCs are obtained via the eigen-decomposition of the covariance

$$\int v(s,t)\xi(t)dt = \lambda\xi(s),$$

where

- v(s, t) is the covariance function across curves between time points *s* and *t*.
- λ and $\xi(.)$ are the eigenvalues and **eigenfunctions** obtained such that λ_j (non-decreasing) > 0; $\int_{\mathcal{T}} \xi_j^2(t) dt = 1$; $\int_{\mathcal{T}} \xi_j(t) \xi_{j'}(t) dt = 0$

Discrepancies between countries' trends are attributed to:

- the deviations from the mean level; and
- the contrast between the period 1975 1990 and post 1990.

Electric power consumption

CO2 emissions

• Despite increasing electric consumption, high-income European countries managed to reduce their CO₂ emissions over time (esp. after 1990).

Electric power consumption

- Despite increasing electric consumption, high-income European countries managed to reduce their CO₂ emissions over time (esp. after 1990).
- China, India and Gulf countries continue to emit high CO₂ emissions.

CO2 emissions

Electric power consumption

• All MENA countries continually emit increasing CO₂ emissions regardless of income group; highlighting consequences of development.

Functional Regression

The model of interest here is:

 $CO2_i(t) = \beta_0(t) + \beta_1(t)$ Electric Consumption_i $(t) + \beta_2(t)$ GDP_i $(t) + \epsilon_i(t)$,

where $\beta_0(t), \beta_1(t), \beta_2(t)$ are the regression coefficients **functions**.

This model, is called a **concurrent model**.

Functional Regression

The model of interest here is:

 $CO2_i(t) = \beta_0(t) + \beta_1(t)$ Electric Consumption_i(t) + $\beta_2(t)$ GDP_i(t) + $\epsilon_i(t)$,

where $\beta_0(t), \beta_1(t), \beta_2(t)$ are the regression coefficients **functions**.

This model, is called a **concurrent model**.

• It has both the response and the covariates as functions of time.

Functional Regression

The model of interest here is:

 $CO2_i(t) = \beta_0(t) + \beta_1(t)$ Electric Consumption_i $(t) + \beta_2(t)$ GDP_i $(t) + \epsilon_i(t)$,

where $\beta_0(t), \beta_1(t), \beta_2(t)$ are the regression coefficients **functions**.

This model, is called a **concurrent model**.

- It has both the response and the covariates as **functions of time**.
- It relates the response function **at a specific point** to the covariate value **at the same point**.

• The influence of electric consumption and GDP on CO₂ emissions vary over time.

- The influence of electric consumption and GDP on CO₂ emissions vary over time.
- The influence of electricity dropped between 1990 and 2006 and increased slightly afterwards.

- The influence of electric consumption and GDP on CO₂ emissions vary over time.
- The influence of electricity dropped between 1990 and 2006 and increased slightly afterwards.
- The influence of GDP increased between 1990 and 2006 then started to drop afterwards.

Introduction Data Functional Data Analysis Results Conclusion

• Average CO₂ increases since 2000 simultaneously with an increase in the influence of GDP. (Reforms + Early stage of EKC)

- Average CO₂ increases since 2000 simultaneously with an increase in the influence of GDP. (Reforms + Early stage of EKC)
- The influence of electric consumption remains almost the same over the study period.

- Average CO₂ increases since 2000 simultaneously with an increase in the influence of GDP. (Reforms + Early stage of EKC)
- The influence of electric consumption remains almost the same over the study period.
- More variability between MENA region countries in the recent years.

Conclusions

• Highly developed countries inc. USA, Canada, Japan & Europe managed to reduce their per capita emissions over time since 1990 along with economic growth.

Conclusions

- Highly developed countries inc. USA, Canada, Japan & Europe managed to reduce their per capita emissions over time since 1990 along with economic growth.
- MENA region inc. developing & Gulf countries contribute with increasing per capita CO₂ emissions simultaneous with economic growth and industrial development.

Conclusions

- Highly developed countries inc. USA, Canada, Japan & Europe managed to reduce their per capita emissions over time since 1990 along with economic growth.
- MENA region inc. developing & Gulf countries contribute with increasing per capita CO₂ emissions simultaneous with economic growth and industrial development.

Policy implications

Introduction Data Functional Data Analysis Results Conclusion

- Highly developed countries inc. USA, Canada, Japan & Europe managed to reduce their per capita emissions over time since 1990 along with economic growth.
- MENA region inc. developing & Gulf countries contribute with increasing per capita CO₂ emissions simultaneous with economic growth and industrial development.

Policy implications

• Incentivise industries to adopt more energy efficient technologies.

- Highly developed countries inc. USA, Canada, Japan & Europe managed to reduce their per capita emissions over time since 1990 along with economic growth.
- MENA region inc. developing & Gulf countries contribute with increasing per capita CO₂ emissions simultaneous with economic growth and industrial development.

Policy implications

- Incentivise industries to adopt more energy efficient technologies.
- Increase the capacity of renewables (Windfarms and Solar electricity). Expensive!

- Highly developed countries inc. USA, Canada, Japan & Europe managed to reduce their per capita emissions over time since 1990 along with economic growth.
- MENA region inc. developing & Gulf countries contribute with increasing per capita CO₂ emissions simultaneous with economic growth and industrial development.

Policy implications

- Incentivise industries to adopt more energy efficient technologies.
- Increase the capacity of renewables (Windfarms and Solar electricity). Expensive!
- Targeted investment in innovation opportunities for new business, exports, jobs and a cleaner environment.