# GENDER WAGE GAP AND INTERNATIONAL TRADE: EVIDENCE FROM TURKEY (Preliminary Draft)

Serife Genc Ileri, Sarah Musazay and Mehmet Fatih Ulu

O1
Introduction

02
Theories

03
Study Objectives

**04**Methodology

05 Results 06
Conclusion

**07**Recommendations

08
Future research

# **Gender Wage Gap**

- ◄ It is the difference between the median earnings of women relative to that of men.
- ◆ The global gender wage gap is around 16%. (ILO, 2018)
- Reducing gender inequality can lead to better socio-economic conditions in the country.
   (Wei, Yang, Liu, and Wu, 2013)
- Closing the gender wage gap could bring as much as \$160 trillion to the global economy. (Wodon and De La Briere, 2018)

# **Gender Wage Gap and International Trade**

◆ Several studies based on neo-classical theories find that being more engaged in international trade can reduce the gender wage gap, especially in developing countries.



- Becker's (1957) theory of discrimination.
- When gender discriminating firms face higher competitiveness through international trade, it becomes costlier on them to pay higher male wages.

 $\begin{aligned} w_m &= w^* + d \\ w_f &< w^* + d \\ w_f &< w_m \end{aligned}$  where:  $w_m = \text{men's wage}$   $w^* = \text{market wage}$   $w_f = \text{women's wage}$ 

d = discrimination coefficient

- International trade can increase the gender wage gap (Boler, Javorcik, and Ultveit-Moe, 2018).
- Firms that become exporting firms will demand higher flexibility and more commitment from their workers, as they are now working longer hours or across time zones.



Theory 2



Turkey's

sector.



relationship between the gender wage gap and international trade.



#### **Data**

- This study uses data from the Structure of Earnings Survey (SES), which is conducted by the Turkish Statistical Institute (TURKSTAT).
- It covers three years: 2006, 2010, 2014, and includes 659,952 observations.

#### Data

- 66% of the employees in the data set are male and 24% are female.
- Basic monthly salary: Males: 1361 TL Females: 1417 TL
- Female workers are better educated and at higher levels of the job ladder.
- 62% of employees in the data work in the non-tradable sectors. They earn more
  and have a higher average educational attainment than the workers in the tradable
  sectors.



separately

To see whether there exists a gender wage gap in the data, we use the Blinder-Oaxaca decomposition (Blinder 1973; Oaxaca 1973).

The method decomposes the gender wage gap into three components:

- the gender wage gap due to employee endowments or characteristics,
- the gap due to unexplained reasons or due to factors not normally associated with differences in wages,
- and the gap due to an interaction of the first two components.

The decomposition is formulated as follows

Male and female average wages:

$$Y_{m} = \beta_{0m} + \beta_{1m} x_{m}$$

$$Y_f = \beta_{0f} + \beta_{1f} x_m$$

The gap between the male and female average wages is:

$$Y_m - Y_f = (\beta_{0m} - \beta_{0f}) + (\beta_{1m} x_{1m} - \beta_{1f} x_{1f})$$

$$= G_0 + G_1$$

$$Y_m - Y_f = (\beta_{0m} - \beta_{0f}) + (\beta_{1m} x_{1m} - \beta_{1f} x_{1f})$$
  
=  $G_0 + G_1$ 

- $G_0$  is the differences in the intercepts and  $G_1$  is the differences in  $x_1$  and  $\beta_1$ .
- We decompose G<sub>1</sub> to see how much of the overall wage gap is due to the x
   (characteristics) (explained component) and how much of it is due to the β (coefficients)
   (unexplained component).

$$Y_m - Y_f = \Delta x \beta_f + \Delta \beta x_m = E + (C + CE)$$

To analyze the relationship between the gender wage gap and international trade, we:

- 1. Apply the Blinder-Oaxaca decomposition on the tradable and non-tradable sectors separately and then compare the discrimination coefficient in each.
- 2. Run an OLS regression on the log of basic average monthly salary.

#### For the OLS regression, we form two dummy variables:

- 1. Female: where female employees is 1, and male employees is 0.
- 2. Trade: where the tradable sectors is 1, and non-tradable sectors is 0.

#### We then interact the two variables to get four categories:

- 1. Female-trade: the female employees in the tradable sectors.
- 2. Male-trade: the male employees in the tradable sectors.
- 3. Female-non-trade: female employees in the non-tradable sectors.
- 4. Male-non-trade: It is the constant and represents male employees in the non-tradable sectors.

$$InW_{ij} = X_{ij} + X_1\beta_1 + X_2\beta_2 + X_3\beta_3 + u$$

#### where:

- i = individual
- j = industry
- InW<sub>ii</sub> = the natural logarithm of monthly wage for worker i employed in industry j.
- X<sub>ij</sub> = Individual controls: age, age squared, tenure, education level, collective bargaining coverage, administrative responsibility (occupation, firm size, industry type)
- $X_1$  = female-trade
- $X_2$  = female-nontrade
- $X_3$  = male-trade
- u = the constant, male-non-trade

## **Gender Wage Gap in Turkey's Manufacturing Industry**

Table 5: Summary of decomposition results: tradable + non-tradable

| Mean prediction of female wages  | 6.973  |
|----------------------------------|--------|
| Mean prediction of male wages    | 6.934  |
| Raw differential (female - male) | 0.039  |
| - due to endowments (E)          | 0.065  |
| - due to coefficients (C)        | -0.034 |
| - due to interaction (CE)        | 0.008  |

# **Gender Wage Gap in Turkey's Manufacturing Industry**

Table 6: Decomposition results for variables: tradable + non-tradable

| Variables | (E)    | (C)    | (CE)   |
|-----------|--------|--------|--------|
| trade     | 0.006  | -0.005 | 0.001  |
| age       | -0.074 | 0.545  | -0.043 |
| agesq     | 0.044  | -0.292 | 0.044  |
| сра       | -0.009 | -0.004 | 0.002  |
| tenure    | -0.020 | 0.015  | -0.003 |
| eđu       | 0.090  | 0.041  | 0.010  |
| admin     | -0.004 | 0.001  | -0.000 |
| year      | 0.031  | -9.341 | -0.001 |
| occ       | yes    | yes    | yes    |
| firm      | yes    | yes    | yes    |
| industry  | yes    | yes    | yes    |
| Constant  | 0.000  | 9.008  | 0.000  |
| Total     | 0.065  | -0.034 | 0.0038 |

# **Gender Wage Gap in the Tradable Sectors**

| Table 7: Summary | of o | lecomposition | results: | tradable |
|------------------|------|---------------|----------|----------|
|------------------|------|---------------|----------|----------|

| Mean prediction of male wages   | 6.836 |
|---------------------------------|-------|
| Mean prediction of female wages | 6.756 |
| Raw differential (male-female)  | 0.080 |
| - due to endowments (E)         | 0.033 |
| - due to coefficients (C)       | 0.042 |
| - due to interaction (CE)       | 0.005 |

## **Gender Wage Gap in the Tradable Sectors**

Table 8: Decomposition results for variables: tradable

| Variables | (E)    | (C)    | (CE)   |  |
|-----------|--------|--------|--------|--|
| age       | 0.052  | -0.148 | -0.010 |  |
| agesq     | -0.036 | 0.122  | 0.016  |  |
| сра       | 0.015  | -0.003 | -0.002 |  |
| tenure    | 0.026  | 0.002  | 0.001  |  |
| eđu       | -0.032 | -0.008 | 0.001  |  |
| admin     | 0.003  | 0.003  | 0.000  |  |
| year      | 0.004  | 1.292  | 0.000  |  |
| occ       | yes    | yes    | yes    |  |
| firm      | yes    | yes    | yes    |  |
| industry  | yes    | yes    | yes    |  |
| Constant  | 0.000  | -1.218 | 0.000  |  |
| Total     | 0.033  | 0.042  | 0.005  |  |

## **Gender Wage Gap in the Non-tradable Sectors**

Table 9: Summary of decomposition results: non-tradable

| Mean prediction of female wages | 7.064  |
|---------------------------------|--------|
| Mean prediction of male wages   | 6.998  |
| Raw differential (female-male)  | 0.066  |
| - due to endowments (E)         | 0.089  |
| - due to coefficients (C)       | -0.032 |
| - due to interaction (CE)       | 0.009  |

## **Gender Wage Gap in the Non-tradable Sectors**

Table 10: Decomposition results for variables: non-tradable

| Variables | (E)    | (C)    | (CE)   |
|-----------|--------|--------|--------|
| age       | -0.096 | 0.702  | -0.062 |
| agesq     | 0.062  | -0.360 | 0.061  |
| сра       | -0.006 | -0.008 | 0.002  |
| tenure    | -0.015 | 0.019  | -0.003 |
| edu       | 0.113  | 0.053  | 0.013  |
| admin     | -0.005 | 0.002  | -0.000 |
| year      | 0.036  | -9.841 | -0.002 |
| occ       | yes    | yes    | yes    |
| fi m      | yes    | yes    | yes    |
| industry  | yes    | yes    | yes    |
| Constant  | 0.000  | 9.402  | 0.000  |
| Total     | 0.089  | -0.032 | 0.009  |

#### Table 11: Regression results

|                     | (1)          | (2)          | (3)          | (4)          |
|---------------------|--------------|--------------|--------------|--------------|
| VARIABLES           | Model 1      | Model 2      | Model 3      | Model 4      |
| male in trade       | -0.0618***   | -0.0499***   | -0.0450***   | -6.91e06     |
|                     | (0.00130)    | (0.00136)    | (0.00133)    | (0.00414)    |
| female in non-trade | -0.0207***   | -0.0264***   | -0.0263***   | -0.0192***   |
|                     | (0.00160)    | (0.00157)    | (0.00153)    | (0.00153)    |
| female in trade     | -0.104***    | -0.0976***   | -0.0960***   | -0.0335***   |
|                     | (0.00224)    | (0.00220)    | (0.00214)    | (0.00455)    |
| age                 | 0.0304***    | 0.0286***    | 0.0281***    | 0.0259***    |
|                     | (0.000385)   | (0.000376)   | (0.000365)   | (0.000358)   |
| age squared         | -0.000286*** | -0.000280*** | -0.000263*** | -0.000241*** |
|                     | (5.17e-06)   | (5.04e-06)   | (4.90e-06)   | (4.80e-06)   |
| сра                 | 0.197***     | 0.215***     | 0.117***     | 0.0804***    |
|                     | (0.00197)    | (0.00193)    | (0.00196)    | (0.00198)    |
| tenure              | 0.0283***    | 0.0285***    | 0.0241***    | 0.0223***    |
|                     | (0.000128)   | (0.000126)   | (0.000125)   | (0.000124)   |
| education           | 0.144***     | 0.106***     | 0.0955***    | 0.0866***    |
|                     | (0.000407)   | (0.000475)   | (0.000466)   | (0.000466)   |
| admin               | 0.275***     | 0.143***     | 0.142***     | 0.131***     |
|                     | (0.00167)    | (0.00182)    | (0.00177)    | (0.00175)    |
| year                | 0.0958***    | 0.0957***    | 0.0919***    | 0.0914***    |
|                     | (0.000171)   | (0.000171)   | (0.000168)   | (0.000172)   |
| occupation          | No           | Yes          | Yes          | Yes          |
| firm                | No           | No           | Yes          | Yes          |
| industry            | No           | No           | No           | Yes          |
| constant            | -186.8***    | -186.8***    | -178.4***    | -177.4***    |
|                     | (0.344)      | (0344)       | (-0.338)     | (0345)       |
| observations        | 660,204      | 660,204      | 660,204      | 660,204      |
| r-squared           | 0.540        | 0.563        | 0.587        | 0.606        |

Table 12: Regression results: gender wage gap

|                  | Model 1 | Model 2 | Model 3 | Model 4 |
|------------------|---------|---------|---------|---------|
| Tradable GWG     | 0.0422  | 0.0471  | 0.051   | 0.0334  |
| Non-tradable GWG | 0.0207  | 0.0264  | 0.0263  | 0.0192  |

# This result is similar to what was found by Boler et al. (2017), and Menon and Rogers (2009).

| Boler et al. (2018)     | reasoning for the positive relationship between trade and the wage gap, was that working across large time zones increases demand for male workers who are seen as more flexible than women. |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Menon and Rogers (2009) | an increase in the gender wage gap through international trade happens due to a skill-biased technological change.                                                                           |

| Country                  | Time Zones                          |  |  |  |
|--------------------------|-------------------------------------|--|--|--|
| Turk                     | Turkey's top exporting destinations |  |  |  |
| 1. Germany               | GMT+2                               |  |  |  |
| United Kingdom           | GMT+1                               |  |  |  |
| 3. Italy                 | GNT+2                               |  |  |  |
| 4. United Arab Emirates  | GMT+4                               |  |  |  |
| 5. Iraq                  | GMT+3                               |  |  |  |
| 6. United States         | GMT-4 (in Washington DC)            |  |  |  |
| 7. France                | GMT+2                               |  |  |  |
| 8. Spain                 | GMT+2                               |  |  |  |
| 9. Belgium-Luxembourg    | GMT+2                               |  |  |  |
| 10. Poland               | GMT+2                               |  |  |  |
| Tu                       | skey's top importing origins        |  |  |  |
| 1. China                 | GMT+8                               |  |  |  |
| 2. Germany               | GMT+2                               |  |  |  |
| 3. Russia                | GMT+3 (Moscow)                      |  |  |  |
| 4. Italy                 | GMT+2                               |  |  |  |
| 5. United States         | GMT-4 (in Washington DC)            |  |  |  |
| 6. France                | GNT+2                               |  |  |  |
| 7. United Kingdom        | GMT+1                               |  |  |  |
| 8. Switzerland           | GMT+2                               |  |  |  |
| 9. Spain                 | GNT+2                               |  |  |  |
| 10. United Arab Emirates | GMT+3                               |  |  |  |

Results 25

#### Boler et al. (2018)

 also suggest that some countries with more conservative attitudes may prefer to communicate with male employees.

 propose that in an environment of tough competition only the most profitable firms survive. They are also the firms most able to discriminate.

- Menon and Rogers (2009) find that in less capital intensive industries the wage gap reduced, while in the more concentrated industries it increased.
- Instead of in-firm discrimination, there is wider discrimination present in the country
- propose policies on promoting female education to increase the number of skilled female labor.

We can propose that cultural values and ideas on female roles, can be a reason for the gender wage gap present.

- There is a 2.6% GWG present in the manufacturing sector in Turkey. T
- The GWG is higher in the tradable sectors than in the non-tradable sectors.
- Regression results: 3% in the tradable sectors, 2% in the non-tradable sectors. Decomposition results: 4% in the tradable sectors, 3% in the non-tradable sectors.
- In the tradable sectors, male workers are earning higher than what they should be earning. In the non-tradable sectors, female workers are earning less than what they should be earning.

 Policy suggestions would be to promote a culture of salary transparency and provide social support for working mothers, as well as subsidies for those companies that accommodate to working mother.

- Including firm profitability as a control variable
- Future research is needed to study through what mechanisms does international trade worsen the gender wage gap.

# Thank you!