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Abstract

This paper studies the optimal asset allocation for a sovereign wealth fund (SWF) subject
to a stochastic stream of commodity-based income, where, without loss of generality, we focus
on oil-based SWFs. Using CRRA utility, we assume the fund�s objective is to maximize the
discounted utility of intertemporal consumption in the presence of time-varying investment
opportunities, and given non-zero correlations between shocks to oil income and asset return
innovations. We use the log-linear approximation method of Campbell (1993) to solve for the
model�s optimal asset allocation and consumption rules. Using historical data, we estimate the
model parameters using the maximization-by-parts algorithm of Song et al. (2005). We then
calibrate the model to study the optimal allocation and consumption for varying levels of risk
aversion, time preference and oil income volatility. Our results are of interest to SWFs seeking
optimal portfolio choice in the face of changing investment opportunities which correlate with
their stochastic stream of income.

Keywords: Sovereign wealth fund; optimal asset allocation; optimal consumption rule, oil
income volatility; hedging demand; CRRA utility.

JEL classi�cation: C61; E21; G11; Q32.

1 Introduction

The proliferation of sovereign wealth funds (SWFs) in the last two decades is a notable evolution

in how a country�s national savings can be harnessed to achieve multiple objectives. For many

states, their SWFs are perceived as vehicles for precautionary savings and intergenerational

wealth transfer. In addition, they can and have been used for macroeconomic stabilization in

the face of adverse economic shocks. The drawdowns witnessed in some commodity-dependent



SWFs in the face of the secular decline in commodity prices is a case in point, speci�cally for oil-

based SWFs. Furthermore, some SWFs are thought to have been used to gain political leverage

at opportune moments. Therefore, it is not surprising that they have attracted the attention of

academics, practitioners and policymakers.

Perhaps their signi�cance as key players in international �nancial markets came into the

limelight during the 2008 �nancial crisis when some SWFs helped recapitalize some distressed

European and U.S. banks. In 2009, and amid rising concerns about the potential use of SWFs

for political objectives, the International Monetary Fund supported the establishment of the

International Forum of Sovereign Wealth Funds, with the aim of encouraging best practices

including transparency about the funds�objectives and operations.

The current total assets of SWFs are about US$ 7.4 trillion, of which 56.6 percent are in

funds based on the proceeds from oil exports.1 Since 2000, total assets have increased sevenfold

in large part due to high oil prices, speci�cally during the period 2008-2013 save for the drop in

2009. Approximately 40 percent of the funds (by value) originated from the Middle East, with

a similar proportion originating from Asia. Some of the world�s largest SWFs comprise the bulk

of accumulated national savings in their economies, and the fund value often exceeds aggregate

output. For instance, with regard to the two largest SWFs in Norway and the UAE, their size

was 2 to 3 times the GDP of their respective economies in 2016.

For the majority of SWFs, the allocation among asset classes has evolved considerably over

the years, with the majority of the oil-based funds increasing their allocation to equity relative

to bonds. For instance, the SWF of Norway, currently the largest in the world with US$ 922

billion in total assets, has gradually changed its equity-bond allocation from a 40-60 ratio in 2006

to a 60-40 ratio in 2009. The funds of Kuwait, Norway, Qatar, Saudi Arabia and UAE all have

comparable allocations to equity, roughly equal to 60 percent of their portfolio allocation. For

Norway and Saudi Arabia, about 35 percent of their SWF portfolio is invested in bonds, while

Kuwait, Qatar and UAE invest 15-20 percent in bonds, and the rest is allocated to alternative

investments such as real estate and direct equity in infrastructure projects.

The studies of Dyck and Morse (2011) and Bernstein et al. (2013) explored the determinants

of the asset allocation of SWFs by studying their historical transactions and acquisitions. The

primary conclusion of these studies is that the two most predominant objectives seem to be

maximizing risk-adjusted returns, and ful�lling strategic objectives related to the development of

1This estimate is based on the Sovereign Wealth Fund Institute (SWFI) online database, available at
https://www.sw�nstitute.org. The estimate for most funds is for accumulated assets as of end March 2017.
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know-how in particular industries. In contrast to the actual asset allocation for a SWF, this paper

focuses on its optimal asset allocation given dependence on a stochastic stream of commodity-

based income, which has a given correlation structure with the �nancial market variables.2 In this

regard, our paper contributes to the nascent but growing literature on optimal asset allocation for

SWFs; see, for example, Gintschel and Scherer (2008), Scherer (2009), Balding and Yao (2011),

Scherer (2011) and van den Bremer et al. (2016).

Gintschel and Scherer (2008), Balding and Yao (2011) and Scherer (2011) utilize the classical

mean-variance framework of Markowitz (1959) and Lintner (1965a, 1965b), in which they deal

with a static portfolio allocation problem with no intertemporal dimension. Our model is more

in line with the class of dynamic asset allocation models pioneered by Merton (1969, 1971). In

this class of models, the optimal asset allocation is intricately linked to the path of optimal

consumption since the latter is the input to the investor�s utility function. Our model also di¤ers

from the classical models in that it allows for a stochastic stream of income to in�uence the

optimal asset allocation and the path of intertemporal consumption. In this regard, our model

is closely related to the work of Veceira (2001) and Campbell et al. (2003). With regard to

the literature on SWFs, our model�s structure and assumptions also bear some resemblance to

Scherer (2009) and van den Bremer et al. (2016). In what follows, we discuss how our model and

assumptions di¤er from these earlier contributions.

Both Veceira (2001) and Campbell et al. (2003) build on a number of in�uential papers

that focused on optimal asset allocation in the presence of a stochastic stream of labor income.

Mayers (1972) and Fama and Schwert (1977) were among the �rst attempts to study the impact

of human capital on portfolio choice, followed by the seminal works of Bodie et al. (1992) and

Koo (1998), among others. We work under the assumption that the fund is used by the sovereign

with the objective of smoothing intertemporal consumption out of the fund subject to stochastic

returns on the fund�s portfolio, and injections of new capital from a stochastic stream of oil

revenue. Our setup is one where the fund is managed by an agent of the state with the sole

objective of maximizing the utility of intertemporal consumption out of the fund, and we assume

that the objective of the fund owner (i.e. the sovereign) coincides with that of the fund manager

such that potential agency problems can be ignored.3

While Bodie et al. (1992) assumed that the exogenous stream of income is uncorrelated with

2Without loss of generality, we assume that the fund is based on oil revenues. Our analysis also extends
straightforwardly to funds based on other commodities traded in international markets.

3See Bernstein et al. (2013) for a related discussion of the agency problems that arise from political interference
with the fund management.
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the returns on the risky assets, we allow the shocks to oil income and the innovations to the

risky asset returns to be contemporaneously correlated, which gives room for hedging against oil

income volatility. This also features in Gintschel and Scherer (2008), Scherer (2011) and van den

Bremer et al. (2016). Given the objective of maximizing the utility of intertemporal consumption,

our model also sheds light on the optimal consumption path under various assumptions about

risk aversion, rate of time preference, and the correlation structure between oil income shocks

and innovations to the risky assets and state variables. This, in turn, enables us to relate the

optimal rules to the observed behavior of real-life SWFs.

Compared to Veceira (2001), our model allows for several risky assets in the portfolio choice

problem. In addition, it allows for time-varying investment opportunities by specifying the

dynamics of the excess returns on the risky assets and the state variables. This makes our model

closer in structure to Campbell et al. (2003), however our model additionally includes a stochastic

process for oil income, while having a stochastic stream of income is not considered in Campbell

et al. (2003).

In the context of the literature on SWFs, our paper considers optimal asset allocation as an

intertemporal problem as in Scherer (2009) and van den Bremer et al. (2016). Scherer (2009),

however, does not derive an optimal rule for consumption out of the fund. On the other hand,

van den Bremer et al. (2016) do not incorporate return predictability into their model. Our

model includes both features, which enables us to study how the optimal allocation and path for

consumption change with the available investment opportunities, and also to relate our �ndings to

the actual behavior of existing oil-based SWFs. It is worth noting that we take the underground

oil wealth as given, and thus our model does not include the optimal rate of oil extraction to

manage the tradeo¤ between above- and underground wealth. This aspect of the problem is

addressed in Scherer (2011) and van den Bremer et al. (2016) under di¤erent assumptions, and

it is another point of distinction between their models and ours.

The rest of the paper is organized as follows: Section 2 gives an overview of SWFs with a

particular focus on the largest oil-based SWFs. Section 3 presents the model and an outline of

the solution for the optimal asset allocation and consumption rules, while Section 4 discusses the

estimation of the model parameters. Section 5 presents the estimation results based on historical

data, while Section 6 discusses the optimal asset allocation and consumption path, and shows

how they change when varying the model�s main parameters. Section 7 concludes the paper,

while Appendix A includes the technical derivations.
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2 Sovereign Wealth Funds: An Overview

With the exception of state-level funds in the U.S., such as the Permanent School Fund and

Permanent University Fund at the State of Texas, the �rst national SWF (Kuwait Investment

Authority) was established in Kuwait in 1953 with the objective of investing the surplus income

from oil. Since then SWFs have proliferated and currently the largest funds in terms of asset

value belong to Asian and the Middle Eastern states. As of end of March, 2017, SWFs assets

stood at US$ 7.4 trillion, approximately 57 percent of which are in funds based on the proceeds

of oil and gas exports. With the exception of China and Singapore, the world�s largest SWFs

belong to oil exporters, namely Kuwait, Qatar, Norway, Saudi Arabia and the UAE. The total

assets of these funds increased signi�cantly over the last decade due to a surge in oil export

proceeds boosted by high oil prices.

Table 1 lists the largest SWFs around the globe, their total assets, year of inception and the

origin of the fund. The world�s largest SWF is the Government Pension Fund (Global) of Norway

with assets amounting to US$ 922 billion as of end of March, 2017. For some countries, there

exists more than one SWF. For instance, the UAE owns the Abu Dhabi Investment Authority

(ADIA) with total assets of US$ 828 billion, in addition to four other SWFs with combined

assets of US$ 479 billion. Each fund may have its own set of objectives. For example, the

Abu Dhabi Investment Council, an o¤spring of ADIA, aims to maximize risk-adjusted returns

through a well-diversi�ed portfolio both locally and globally, whereas ADIA seeks long-term

capital appreciation with partial hedging against oil price �uctuations.4

Oil-based SWFs enabled their states to accumulate a substantial wealth bu¤er during the

prolonged boom in oil prices over the last decade, thereby creating a strong cushion for their

respective economies as oil prices declined sharply in 2015. As seen in Table 2, the size of

the SWFs in the UAE, Norway, Saudi Arabia, Kuwait and Qatar exceeded the level of annual

output in 2016. In Kuwait and the UAE, the SWF assets were 4.6 and 3.2 times the size of the

economy, respectively, while in Saudi Arabia, accumulated assets (in both SAMA and the Public

Investment Fund) are almost on a par with GDP in 2016.

SWF assets are also a signi�cant multiple of the annual oil rents5 especially for the economies

that are relatively more diversi�ed such as Norway and the UAE.6 The heterogeneity in the ratio

4Source: Funds�mission statements and objectives as stated on the Sovereign Wealth Fund Institute database.
5Oil rents are de�ned as the di¤erence between the value of crude oil production at prevailing prices and

the total cost of production, and is a measure popularized by the World Bank to capture the relative economic
importance of extractive industries.

6 It is worth noting that the �gures for Qatar and Norway are likely understated since their energy wealth is
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SWF Name Country Assets Inception Origin
(US$ Bn.)

Government Pension Fund (Global) Norway 922 1990 Oil
Abu Dhabi Investment Authority UAE �Abu Dhabi 828 1976 Oil
China Investment Corporation China 814 2007 Non-comm.
Kuwait Investment Authority Kuwait 524 1953 Oil
SAMA Foreign Holdings1 Saudi Arabia 514 n.a. Oil
Hong Kong Monetary Authority Investment Portfolio China �Hong Kong 457 1993 Non-comm.
SAFE Investment Company2 China 441 1997 Non-comm.
Government of Singapore Investment Corporation Singapore 359 1981 Non-comm.
Qatar Investment Authority Qatar 320 2005 Oil & gas
National Social Security Fund China 295 2000 Non-comm.
Investment Corporation of Dubai UAE �Dubai 210 2006 Non-comm.
Temasek Holdings Singapore 197 1974 Non-comm.
Public Investment Fund Saudi Arabia 183 2008 Oil
Mubadala Investment Company UAE �Abu Dhabi 125 2007 Oil
Abu Dhabi Investment Council UAE �Abu Dhabi 110 2006 Non-comm.
Korea Investment Corporation South Korea 108 2005 Non-comm.
Australian Future Fund Australia 99 2006 Non-comm.
National Development Fund of Iran Iran 91 2011 Oil & gas
National Welfare Fund Russia 72 2008 Oil
Libyan Investment Authority Libya 66 2006 Oil
Kazakhstan National Fund Kazakhstan 65 2000 Oil
Samruk-Kazyna JSC Kazakhstan 61 2008 Non-comm.
Alaska Permanent Fund US �Alaska 55 1976 Oil
Brunei Investment Agency Brunei 40 1983 Oil
Texas Permanent School Fund US �Texas 38 1854 Oil & other
Khazanah Nasional Malaysia 35 1993 Non-comm.
Emirates Investment Authority UAE �Federal 34 2007 Oil
State Oil Fund Azerbaijan 33 1999 Oil
New Zealand Superannuation Fund New Zealand 23 2003 Non-comm.
New Mexico State Investment Council US �New Mexico 20 1958 Oil & gas
State General Reserve Fund Oman 18 1980 Oil & gas
Permanent University Fund US �Texas 17 1876 Oil & gas
Timor-Leste Petroleum Fund East Timor 17 2005 Oil & gas
Reserve Fund Russia 16 2008 Oil
Social and Economic Stabilization Fund Chile 15 2007 Copper

Table 1: World�s largest sovereign wealth funds by assets, country, year of inception and origin of savings.
Source: Sovereign Wealth Fund Institute database (July 2017 update). Estimates are at di¤erent time points,
and the most recent are as of end of March, 2017. Notes: 1/ SAMA is the Saudi Arabian Monetary Authority.
2/ Based on the Sovereign Wealth Fund Institute estimates.

of assets to oil rents across the economies listed in Table 2 is quite telling of the variation in

the importance of annual oil income relative to accumulated assets. For instance, in the case of

Norway, annual rents from oil are rather insigni�cant when compared to the size of their SWF,

which as we discuss later, has an important implication for their optimal portfolio choice. We

shall see that given that Norway has a low ratio of oil income to accumulated assets, that means

the component of hedging (against oil income shocks) in their portfolio allocation should be lower

than, say, Saudi Arabia where annual oil income is still signi�cant at it constitutes around a �fth

of the state�s accumulated wealth.

Another relevant dimension is the ratio of assets to proved oil reserves, which is reported in

the last column of Table 2.7 This ratio is a measure of above- to under-ground wealth, and it is

composed additionally of signi�cant natural gas reserves.
7The value of proved oil reserves is calculated based on the stock of proved reserves at end of 2016 valued using
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Country SWF Assets Assets
GDP

Oil rents
GDP

Assets
Oil rents

Assets
Oil reserves

UAE 1098 3.15 0.11 28.10 0.25
Norway 922 2.49 0.03 81.79 4.09
Saudi Arabia 697 1.08 0.23 4.82 0.06
Kuwait 524 4.59 0.38 11.93 0.12
Qatar 320 2.10 0.06 35.86 0.29
Russia 88 0.07 0.06 1.26 0.03
Kazakhstan 67 0.38 0.06 6.83 0.05

Table 2: World�s largest sovereign wealth funds: Total assets in relation to economic attributes. Source:
Sovereign Wealth Fund Institute database (July 2017 update). Notes: For SWF assets, all of the oil-based funds
for each country are grouped together. The GDP data is obtained from the International Monetary Fund
International Financial Statistics database and refer to 2016 �gures, except for Kazakhstan and Kuwait where
the GDP �gure is for 2015. Oil rents are from the World Bank World Development Indicators database, and all
�gures are for 2015. Proved oil reserves (as of end of 2016) are from the U.S. Energy Information Administration.

evident that this ratio also exhibits large variation across these countries. In Norway, the bulk

of its wealth is above-ground wealth as the state used oil revenue to build its SWF, the size of

which is roughly 4 times the size of its proved reserves. For Qatar and the UAE, the accumulated

assets above ground represent nearly a quarter of the remaining wealth underground. For Saudi

Arabia, its pockets of underground wealth are much deeper in comparison as the country still

holds about 16 percent of the world�s crude oil reserves.

With regard to the funds�allocation across asset classes, Figure 1 shows the asset allocation

for the �ve biggest oil-based SWFs. The �gures indicate that the allocation strategies of these

funds seem to have converged on an equity share that is around 60 percent of the total allocation.

In the cases of Norway and Saudi Arabia, the remainder is mostly allocated to bonds with a

negligible share going to other investments such as real estate and hedge funds. Kuwait and

Qatar have both allocated a share to other investments (e.g. real estate, private equity in

infrastructure and hedge funds) that is higher than that allocated to bonds. Their shares in the

former class amounted to 26 percent for each country, while their allocation to bonds was 16

percent and 17 percent, respectively. For the UAE (ADIA), the allocation to bonds and other

investments is roughly the same. This is likely to be a manifestation of more risk tolerance on

the part of Kuwait, Qatar and the UAE (ADIA), as these funds seek the higher returns o¤ered

by nontraditional asset classes.

the average of Brent and WTI prices in 2016, which is US$ 44.16 per barrel.
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Figure 1: Asset allocation for large SWFs across asset classes. Source: Sovereign Wealth Fund Institute database
(July 2017 update). Notes: The asset class "other" includes real estate, alternative investments, hedge funds,
and private equity (particularly in infrastructure projects).

3 Modelling Framework

3.1 The Model

We consider a discrete-time model where Ft is the value of the fund at time t, i.e. at the beginning

of the period [t; t+1[ and Yt is the income from oil allocated to the fund at time t. Let Ct denote

consumption out of the fund over the interval [t; t+1[ decided upon and e¤ected at time t. The

�nancial market consists of a risk-free asset and n risky assets. The continuously compounded

returns on the risk-free and risky asset i, i = 1; :::; n, over the interval [t; t+ 1[ are denoted R0;t

and Ri;t, respectively.

The fund�s evolution over the period [t; t+ 1[ is given by

Ft+1 = (Ft + Yt � Ct)RF;t+1; (1)

where RF;t+1 is the return on the fund�s portfolio, which is determined by the return on the

portfolio constituents as follows:

RF;t+1 = �0;tR0;t+1 + �
0
tRt+1 = R0;t+1 +

nX
i=1

�i;t (Ri;t+1 �R0;t+1) ; (2)

where �0;t is the weight on the risk-free asset, �t = (�1;t; :::; �n;t)
0, where �i;t denotes the weight

on the i-th risky asset, with Ri;t+1 � R0;t+1 representing the excess returns on asset i. The
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fund manager�s objective is to maximize the expected value of the stream of current and future

(discounted) utility of consumption, subject to a discount rate 0 < � < 1:

max
fCt;�tg1t=0

E

" 1X
t=0

�tU (Ct)

#
;

where E [�] denotes the expectation operator. We assume the fund manager�s utility is given by

the constant relative risk aversion (CRRA) utility:

U (Ct) =
C1�
t

1� 
 ; (3)

where 
 > 0, 
 6= 1, is the coe¢ cient of relative risk aversion, and 1

 is the elasticity of intertem-

poral substitution (EIS).8

De�ne the vector of log excess returns

xt+1 =

0BBB@
r1;t+1 � r0;t+1
r2;t+1 � r0;t+1

...
rn;t+1 � r0;t+1

1CCCA ;
where rj;t+1 = ln (Rj;t+1) for j = 0; 1; :::; n. We allow the model to include other state variables

st+1, and we de�ne the state vector as

zt+1 =

0@ r0;t+1
xt+1
st+1

1A :
We assume a VAR(1) model for zt+1:

zt+1 = �0 +�1zt + �t+1; (4)

where the random vector �t+1 represents shocks to the state variables. We assume that

�t+1jFt �MVN (0;��) ;

with

�� = V art(�t+1) =

0@ �20 �
0
0x �

0
0s

�0x �xx �
0
xs

�0s �xs �ss

1A ;
where Ft is the time t information set.9 The oil income that is added to the fund, Yt, grows

according to the following dynamics:

Yt+1 = Yt exp
�
g + �t+1

	
; (5)

8 In the limiting case when 
 = 1, it specializes to the log utility function.
9We maintain the assumption of homoskedasticity of the innovation �t+1, i.e. constant variances and covari-

ances. As shown by Harvey (1989,1991) and Glosten et al. (1993) in the context of optimal asset allocation,
predicting the second moment of returns provides smaller gains compared to predicting the �rst moment.
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where g is the constant rate of growth, and the oil income shock is �t+1. The oil income shock

(�t+1) and the shocks to the state variables (�t+1) are assumed to be correlated where we have

�t+1 = �
0
�t+1 + �(o)�

(o)
t+1; (6)

with �(o)t+1 and �t+1 assumed independent, and �
(o)
t+1 � N(0; 1). With the decomposition in (6),

shocks to oil income can be induced by shocks to the state variables via the vector �, or due to

an idiosyncratic oil shock �(o)t+1 with variance �
2
(o).

3.2 Optimal Solution

For this problem, The Euler equation for consumption is given by

Et

"(
�

�
Ct+1
Ct

��
)
Ri;t+1

#
= 1 (7)

for i = 1; 2; :::; n; F . To solve for the optimal weights �i;t, we adopt the log-linear approximation

method of Campbell (1993). One can write the budget constraint in (1) as

Ft+1
Yt+1

=

�
Ft
Yt
+ 1� Ct

Yt

�
Yt
Yt+1

RF;t: (8)

This is equivalent in logs to

ft+1 � yt+1 = log (1 + expfft � ytg � expfct � ytg)��yt+1 + rF;t+1: (9)

The �rst term on the right-hand side is a nonlinear function of the wealth-to-income and

consumption-to-income ratios. Consider this expression as a function of two variables z(k)t =

ln(Z
(k)
t ), k = 1; 2, and take a �rst-order Taylor expansion around the means �z(k). The resulting

approximation is

ln
�
1 + exp(z

(1)
t )� exp(z(2)t )

�
� ln

�
1 + exp(�z(1))� exp(�z(2))

�
+

exp(�z(1))

1 + exp(�z(1))� exp(�z(2))

�
z
(1)
t � �z(1)

�
� exp(�z(2))

1 + exp(�z(1))� exp(�z(2))

�
z
(2)
t � �z(2)

�
:

We use this expansion for z(1)t = ft � yt and z(2)t = ct � yt, and so we obtain the following

log-linear approximation to the budget constraint:

ft+1 � yt+1 � k + �f (ft � yt)� �c(ct � yt)��yt+1 + rF;t+1; (10)

where

�f =
expfE[ft � yt]g

1 + expfE[ft � yt]g � expfE[ct � yt]g
; (11)

10



�c =
expfE[ct � yt]g

1 + expfE[ft � yt]g � expfE[ct � yt]g
; (12)

and

k = �(1� �f + �c) ln(1� �f + �c)� �f ln(�f ) + �c ln(�c):

Campbell and Viceira (1999) derive an approximation for the log return on the fund as follows

rF;t+1 = r0;t+1 + �
0
txt+1 +

1

2
�
0
t(�

2
x � �xx�t); (13)

where �2x = diag(�xx). The Euler equation in (7) is also nonlinear and a log-linear approximation

is derived as follows (see Campbell et al. (2003) for details):

0 = ln(�)� 
Et[ct+1 � ct] + Et[ri;t+1] +
1

2
V art[ri;t+1 � 
 (ct+1 � ct)]: (14)

Proposition 1 Under the log-linear approximation, the optimal portfolio allocation and log con-

sumption are given by

�t = A0 +A1zt; (15)

and

ct = a+ bft + (1� b) yt +B
0
1zt + z

0
tB2zt; (16)

where A0, A1, a, b, B1 and B2 are given in Appendix A.

The proof of Proposition 1 is given in Appendix A. To understand this solution, it is instruc-

tive to study the solution in (15) and (16) further. We start with the optimal asset allocation in

Section 3.3, followed by the optimal path for consumption in Section 3.4.

3.3 Optimal Asset Allocation

The parameters of the optimal asset allocation A0 and A1 can be decomposed as follows (see

Appendix A for details):

A0|{z}
Total

= A
(s)
0|{z}

Speculative

+ A
(h)
0|{z}

Normal hedging

+ A
(o)
0|{z}

Oil hedging

;

A1|{z}
Total

= A
(s)
1|{z}

Speculative

+ A
(h)
1|{z}

Normal hedging

:

We �rst explain the distinction between the di¤erent components of the asset allocation based

on how it serves the investor in achieving an optimal allocation and path for consumption. The

demand for risky assets in this context aims to serve three motives: speculative demand, normal
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hedging demand given �nancial market risk, and oil hedging demand. The expressions for the

di¤erent demand components in A0 = A
(s)
0 +A

(h)
0 +A

(o)
0 are given by

A
(s)
0 =

1

b

��1xx

�
Hx�0 +

1

2
�2x + �0x

�
� �0x;

A
(h)
0 =

1

b
��1xx

h
��(z)0

i
;

A
(o)
0 =

1

b
��1xx

h
�(1� b)Hx�

0
�� � �(y)0

i
:

The term A
(s)
0 represents speculative demand due to the appearance of the coe¢ cient of relative

risk aversion 
 as a scaling factor, where a larger 
 generally reduces the demand for risky

assets. Also, note that A(s)0 is independent of the parameters of the zt process (�0 and �1),

the parameters of the oil income process (g and �2(o)), and also the correlations between the oil

income and �nancial shocks, which is governed by �. The normal hedging demand is given by

A
(h)
0 since it depends on the dynamics of zt through �

(z)
0 , while A

(o)
0 represents the component of

demand that relates to hedging against oil income volatility via �(y)0 , and also hedging against

the correlation between oil income shocks and innovations to the �nancial market variables

through �. Note that the oil hedging component A(o)0 will be zero when � = 0, which implies no

correlation between oil income and the returns on the risky assets, since in such a case we also

have �(y)0 = 0.

For A1 = A
(s)
1 + A

(h)
1 , we have the following decomposition into speculative and normal

hedging demands:

A
(s)
1 =

1

b

��1xx [Hx�1] ;

A
(h)
1 =

1

b
��1xx [��1] :

A similar argument applies to A(s)1 , which captures speculative demand due to the presence of


. Normal hedging demand is given by A(h)1 due to the presence of �1, which is a function of

the parameters of the zt process, and is independent of oil income shocks and their correlation

with the �nancial market variables. By inspecting the term �1 in the appendix, we can see

that when �1 = 0, we have �1 = 0 and consequently A
(h)
1 becomes zero. This is intuitive since

�1 = 0 implies no variation in the available investment opportunities, so the �nancial hedging

component should be zero.

3.4 Optimal Path for Consumption

With regard to the optimal path for consumption given by (16), we have an autonomous level

of consumption a that is independent of the path of ft, yt or zt. This level can be decomposed
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as follows:

a = a(y) + a(z);

with

a(y) =
1

�f � 1

h
(1� b)g � V (y)0 +B

(y)0

1 �0

i
;

a(z) =
1

�f � 1

�
bk � 1



ln(�) +

�
1� 1




�
�0 � V (z)0

�
+

1

�f � 1

h
B
(z)0

1 �0 +�
0
0B2�0 + vec(B2)

0vec(��)
i
; (17)

where the superscripts in a(y) and a(z) signify that they depend chie�y on the parameters of the

oil income process and the state variables�dynamics, respectively. We have a(y) representing

the autonomous level of consumption that increases with a higher rate of growth in oil income

(g), and decreases with V (y)0 which depends on the variance in oil income (�2(o)), among other

parameters. It also depends on how the shocks to oil income correlate with shocks to the state

variables through the term B
(y)0

1 �0 which is non-zero when � 6= 0. It is worth noting that the

sensitivity of a(y) with respect to g depends on the value of b, and the latter plays a signi�cant

role in the path of optimal consumption as we discuss below in detail. The other component of

the autonomous level of consumption is a(z) which depends primarily on the parameters of the

zt process.

We now turn to the role that b plays in in�uencing the path of optimal consumption. First

note that b represents the marginal propensity to consume out of accumulated wealth, thus it

is non-negative at the optimal path.10 Thus, ignoring a and the terms in zt, we can see from

(16) that optimal consumption is a weighted average of ft and yt, with respective weights b and

1�b. This �nding is consistent with the results in Veceira (2001) which are derived from a model

based on CRRA utility, and which deals explicitly with retirement horizon e¤ects for investors.

Recall that b =
�f�1
�c
;with �f and �c respectively given by (11) and (12). Thus b is a function

of two optimal ratios: the wealth-to-income ratio ft � yt, and the consumption-to-income ratio

ct � yt. Both ratios appear in expectation, thus one can think of b as capturing the steady-state

values of these two ratios. Intuitively, for a country that is dependent on a volatile source of

income, it is optimal to build a large wealth bu¤er such that the path of consumption is relatively

insulated from income volatility. As the ratio of wealth-to-income (ft � yt) becomes larger and

larger, we have b approaching 1. This case is discussed in detail in Section 3.5.1. This case is
10 It is straightforward to show that a negative b implies that the mean consumption-to-income ratio exceeds the

mean wealth-to-income ratio, which would lead to an eventual exhaustion of the fund.
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likely to occur in a country where the SWF existed for a long period of time, and in which no

signi�cant drawdowns have been made.11

In continuing the analogy with Veceira (2001), we note that in his model b = 1 for retired

investors, i.e. those investors whose labor income is zero. In the context of SWFs, the similarity

is not with respect to the state of retirement since SWFs are by construction meant to last for

generations to come. The analogy however is relevant when thinking about the progress made

so far by oil-dependent economies with regard to saving su¢ cient wealth relative to their annual

stream of oil income. As shown in Table 2, Norway and the UAE are two countries where the

ratio of wealth-to-income has become substantially higher than other major oil exporters owning

SWFs, and thus they are closer to achieving the model-implied steady-state value for b which is

1. For a country such as Saudi Arabia or Russia, b would be smaller in the short term, and that

means that the weight on yt in (16) will be large implying large �uctuations in consumption as

oil income �uctuates. The recent experience of Saudi Arabia and Russia during the oil revenue

slump in 2015-2017 corroborates our analysis. The remaining terms in (16) involve zt, thus they

represent the change in optimal consumption given variation in the investment opportunities.

3.5 Special Cases of Interest

3.5.1 Mature Funds

Continuing our discussion in Section 3.4 with regard to how b controls the optimal path for

consumption, we now analyze the solution in the limiting case of b = 1. It is straightforward to

show that letting b! 1 is equivalent to

1

1 + expfE[ft � yt]g � expfE[ct � yt]g
! 0:

This happens when the ratio of wealth to income (ft � yt) increases as would be the case with a

mature fund in the sense that the fund value has become so large such that the annual stream

of oil income is negligible in comparison. In this limiting case, we have 
(y)1 = V
(y)
1 = B

(y)
1 = 0

implying

V
(y)
0 =




2
�2(o):

In this case, the optimal consumption is given by

ct � ft = a(y) + a(z) +B(z)
0

1 zt + z
0
tB2zt;

11 Indeed our empirical results reported in Section 6 indicate that for the large majority of di¤erent combinations
of parameter values, we have b! 1. The exceptions to this result occur only for parameter con�gurations which
deviate substantially from what is implied by the historical data, or for nonstandard levels of risk aversion and oil
income volatility.
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where

a(y) =
1

�f � 1

h
�

2
�2(o)

i
;

and a(z) is given by (17) with b set to 1.

When the value of yt is much smaller than the value of accumulated wealth, the ratio of

consumption to wealth (ct� ft) becomes constant if there is no variation in investment opportu-

nities, that is no variation in zt. In such a case, consumption out of wealth has a unit elasticity.

The autonomous level of consumption, a = a(y) + a(z), under the optimal path for consumption

still depends on income through a(y), which in turn depends on yt through �2(o). So the only

impact of yt on optimal consumption is driven by the variance of oil income, which has a negative

impact on ct and the magnitude of its e¤ect scales with 
. Thus, the investor reacts to the high

volatility of income by reducing her current consumption out of wealth. Finally as b ! 1, we

have A(o)0 ! 0, which means the oil hedging demand component in the optimal �t will be zero.

3.5.2 Zero Correlation between Oil Income and the State Variables

When � = 0 in (6), there is no correlation between oil income shocks and the innovations to the

state variables. In such a case, we also have 
(y)1 = V
(y)
1 = B

(y)
1 = 0, implying

V
(y)
0 =




2
�2(o):

Similar to the previous case of a mature fund, the optimal allocation �t changes as the oil hedging

component A(o)0 becomes zero. For ct, it still depends on the oil income and the variance of its

shocks as follows:

ct = a
(y) + a(z) + bft + (1� b) yt +B(z)

0

1 zt + z
0
tB2zt;

where

a(y) =
1

b�c

h
(1� b)g � 


2
�2(o)

i
:

If the oil income and the state variables are uncorrelated, the optimal consumption decreases in

the volatility of income, and increases in expected income growth. The impact of g is important

when b is small, that is when the ratio of wealth to income is small. As the fund matures,

implying b ! 1, the impact of the growth rate of income vanishes, but the negative impact of

volatility remains.
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4 Parameter Estimation

We assume �t+1jFt � MVN (0;��) and �
(o)
t+1 � N(0; 1). Let d denote the dimension of the

innovation vector �t+1. Also let �1 denote the true parameter vector for the VAR process in

(4), such that �1 =
�
�00; vec (�1)

0 ; vech (��)
�0
, where the vec operator stacks the columns of

�1 into a
�
d2 � 1

�
vector, and the vech operator stacks the lower triangular part including the

main diagonal of �� into a
�
d(d+1)
2 � 1

�
vector. Similarly, let �2 =

�
g; �0; �2(o)

�
denote the true

parameter vector for (6), and let � =
�
�0� ; �

0
�

�0 be the true full parameter vector.
This implies the following t-th period log-likelihoods:

l�;t (��) = �1
2

�
d ln (2�) + ln j�� j+ (zt � �0 � �1zt�1)0��1� (zt � �0 � �1zt�1)

�
;

l�;t (�� ; ��) = �1
2

"
ln (2�) + ln�2(o) +

�2t
�2(o)

#
;

where

�t = yt � yt�1 � g � �0�t = yt � yt�1 � g � �0 (zt � �0 � �1zt�1) :

Note the dependence of l� (�) on �� since �t depends on �t. The quasi-maximum likelihood

estimator is b� = �b�0� ;b�0��0 where
b� = argmax

�2�
T�1

TX
t=1

lt(�) (18)

= argmax
�2�

T�1
TX
t=1

l�;t(��) + l�;t(�� ; ��): (19)

De�ne the score vectors s�;t (��) and s�;t (�� ; ��), and the combined score vector st (�) = (s�;t (��) ; s�;t (�� ; ��)).

Under standard regularity conditions (e.g. Newey and McFadden (1994)), we have

p
T
�b� � �0� d�! N(0; I�1J

�
I�1

�0
);

where

J = Var

"
1p
T

TX
t=1

st(�)

#
;

I = �E
�
@st(�)

@�

�
= �E

24 @l�;t(��)
@��@�

0
�

0
@l�;t(��)

@��@�
0
�

@l�;t(��)

@��@�
0
�

35 :
In principle, (18) can be estimated in one step, however given the potentially large number

of parameters,12 estimation e¢ ciency may be adversely a¤ected if the sample size is small.
12Note that �� depends on the dimension of the VAR model in (4). In general, the number of parameters in ��

is 3
2
d (d+ 1), while the dimension of �� is d+ 2.
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In addition, the log-likelihood function may be �at near the optimum which again results in

lower estimation e¢ ciency. For this reason, we use the maximization by parts (MbP) algorithm

proposed in Song et al. (2005). The structure of the log-likelihood function for our model is

convenient for the use of this algorithm.

The MbP algorithm iterates over di¤erent components of the log-likelihood until convergence

is achieved. Given the log-likelihood

lt(�) = l�;t(��) + l�;t(�� ; ��);

the corresponding score equations are0@ @l�;t(��)
@�0�

+
@l�;t(�� ;��)

@�0�
@l�;t(�� ;��)

@�0�

1A = 0:

Note that solving @l�;t(�� ;��)

@�0�
= 0 is easy since �� is of low dimension. Let �

(k)
i denote the k-th

iteration for the estimator, i = (�; �). The algorithm is speci�ed in what follows:

� Step 1. Solve @l�;t(��)
@�0�

= 0 for �(1)� , and
@l�;t(�

(1)
� ;��)

@�0�
= 0 for �(1)� .

� Step 2. For k = 2; 3; :::, solve @l�;t(��)
@�0�

= �@l�;t(�
(k�1)
� ;�

(k�1)
� )

@�0�
for �(k)� , and

@l�;t(�
(k�1)
� ;��)

@�0�
= 0

for �(k)� .

Song et al. (2005) show that �(k) =
�
�
(k)
� ; �

(k)
�

�
is consistent for each k, and that �(k) converges

to the QMLE b� under standard regularity condition. The asymptotic variance of �(k) is computed
using the formulas provided in Theorem 3 in Song et al. (2005).

5 Empirical Analysis

5.1 Data

To calibrate the model, we use annual data over the period 1976 to 2016. For oil income, we use

the net government cash �ow from petroleum for Norway. We use the risk-free asset is proxied

by the U.S. 3-month Treasury bill rate. We consider two asset classes: equity and bonds. For

equity, we use the returns on the S&P500 index as a proxy for global equity returns, and for

bonds, we use the 10-year Treasury constant maturity rate. For the state variables, we use the

dividend yield for the S&P500 as a predictor of future equity returns; see Campbell and Shiller

(1988) and Fama and French (1988).13

13Other state variables that are commonly used in the literature are the term spread (i.e. the yield spread
between long-term and short-term bonds), and the credit spread (proxied by the di¤erence between Baa corporate
bond yield and the 10-year Treasury constant maturity rate). The model allows for including additional variables,
however we include only the dividend yield to maintain parsimony in the VAR models presented below.

17



Variable Mean St. Dev. Skew. Kurt. Min Max � (1)
Return on risk-free asset (rrf;t) 0.047 0.035 0.533 2.898 0.000 0.143 0.890
Excess returns on equity (ereq;t) 0.078 0.159 -0.742 3.288 -0.381 0.321 -0.038
Excess returns on LT bonds (erbn;t) 0.031 0.099 0.033 2.035 -0.142 0.218 -0.208
Dividend yield (dt) 0.029 0.013 0.624 2.150 0.011 0.056 0.918
Net oil cash�ow, US$ bn. (Yt) 26.074 25.001 0.997 2.677 0.809 88.902 0.894

Table 3: Summary statistics for the variables included in the empirical analysis for the sample period 1976-2016.
�(1) is the autocorrelation coe¢ cient at lag 1.

The data for net government cash �ow from petroleum is obtained from the Norwegian

Ministry of Finance and Statistics Norway. The data for U.S. 3-month Treasury bill rate and

10-year Treasury constant maturity rate are obtained from the FRED database at the Federal

Reserve Bank of St. Louis. The S&P 500 index and the dividend yield data are obtained from

Center for Research in Security Prices (CRSP) data �les.

Table 3 provides some descriptive statistics. The risk-free asset had a mean return of 4.7

percent over the sample period with a standard deviation of 3.5 percent. The mean excess

return on equity and bonds recorded 7.8 and 3.1 percent, respectively, with equity subject to

higher volatility. Equity also exhibits negative skewness and higher kurtosis relative to bonds.

The dividend yield was 2.9 percent on average during the sample period with a standard deviation

of 1.3 percent. The return on the risk-free asset is more persistent, relative to the excess returns

on equity and bonds, with the former having an autocorrelation coe¢ cient � (1) equal to 0.89.

The Norwegian state�s net oil cash �ow was US$ 26.1 billion on average, however it has quite

a sizable standard deviation as it started from a meagre amount (close to US$ 0.8 billion) in 1976

and increased progressively with the increase in both oil prices and production, recording a peak

in 2008 as it reached US$ 88.9 billion. It is worth noting that Norway created its SWF in 1990,

which was called the Government Petroleum Fund, before its name was changed to Government

Pension Fund (Global) in 2006. The �rst transfer to the fund was made in 1996 and the amount

was around US$ 0.4 billion. Although the Norwegian fund started later than the start of the

sample period, we still use the data on the government net cash �ow from oil as a reliable time

series to estimate the average rate of growth and the volatility of the stream of oil income that

is deposited into the fund.
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5.2 Estimation Results

In this model, we have zt in (4) de�ned as

zt =

0BB@
rrf;tereq;terbn;t
dt

1CCA =

0BB@
rrf;t

req;t � rrf;t
rbn;t � rrf;t

dt

1CCA :
In the VAR(1) model zt+1 = �0+�1zt+�t+1, the estimates of �0 and �1 are given by (standard

errors reported in brackets):

b�0 =
26666664

�0:0046
(0:0078)

0:0166
(0:1819)

0:0846
(0:0695)

0:0011
(0:0051)

37777775 ; b�1 =
266666664

0:7564
(0:1576)

0:0245
(0:0205)

�0:0725
(0:0336)

0:5295
(0:3068)

�1:9249
(2:5754)

0:0103
(0:3733)

0:0697
(0:4453)

5:1262
(8:0933)

0:9120
(1:2731)

�0:0525
(0:1771)

�0:2314
(0:2995)

�2:9281
(3:1414)

0:0020
(0:0873)

0:0064
(0:0115)

�0:0033
(0:0162)

0:9265
(0:2610)

377777775
:

For rrf;t+1, its own lag is a signi�cant predictor with a positive coe¢ cient due to the evident

persistence in the risk-free rate of return. The current value of erbn;t is also a signi�cant predictor
with a negative coe¢ cient implying that rising returns on longer term bonds lead to a decline

in returns on short-term bond returns due to the impact of investors shifting their maturity

preferences. For ereq;t+1 and erbn;t+1, none of the predictors are signi�cant. For dt+1, its own
lagged value is the only signi�cant predictor due to its strong persistence. These results are

largely consistent with the literature; see, for example, Campbell et al. (2003). The notable

exception is that the dividend yield is often found to be a signi�cant predictor of future equity

returns. In our results, the coe¢ cient has the correct sign however its large standard error is

likely due to the relatively short sample period. With regard to the stability of the VAR(1)

process in (4), all of the eigenvalues of �1 are inside the unit circle, with the largest eigenvalue

equal to 0:93 indicating a stationary process that mean reverts to the unconditional mean vector

�z an estimate of which is given by
�
I� b�1��1 b�0 = � 0:024 0:080 0:034 0:021

�0
.

The estimate of the residual variance-covariance matrix (��) is

b�� =
266666664

0:0001
(0:0000)

�0:0001
(0:0007)

0:0223
(0:0092)

�0:0006
(0:0003)

0:0004
(0:0054)

0:0084
(0:0030)

0:0000
(0:0000)

�0:0006
(0:0003)

�0:0001
(0:0002)

0:0000
(0:0000)

377777775
;
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Parameter estimate
�1 20:4379

(9:2431)

�2 �0:5206
(1:3834)

�3 1:0889
(1:1566)

�4 �14:7282
(49:4780)

g 0:0464
(0:1048)

�2(o) 0:2487
(0:0630)

Table 4: Parameter estimates for equations (5) and (6), which describe the dynamics of oil income growth, and
the interaction between oil income shocks and innovations to the �nancial market variables. Estimates are
obtained using annual data for the sample period 1976-2016, with standard errors reported in parentheses.

which implies the following estimate of the matrix of cross correlations (R�):

bR� =
2664

1:0000
�0:0459 1:0000
�0:5795 0:0290 1:0000
0:2069 �0:8762 �0:1252 1:0000

3775 :
The estimates of �� are given in Table (4), with standard errors reported in brackets. Despite

the lack of statistical signi�cance with the exception of �1, the signs of the beta coe¢ cients

indicate how shocks to the state variables (namely the returns on the risk-free asset and the

excess returns on equity and bonds) correlate with the shocks to income from oil. Recalling the

relationship in (6) where we have �t+1 = �
0
�t+1 + �(o)�

(o)
t+1, with �t+1 denoting the shock to oil

income, we can see shocks to equity returns (and the dividend yield) being negatively correlated

with oil income shocks, while shocks to bond returns (whether for short-term bonds captured by

the risk-free asset, or for longer-term bonds) tend to have a positive correlation with shocks to

the income from oil. The estimate of oil income growth is 4:64 percent with a variance of 24:87.

This rather large variance is consistent with the in-sample variance of the growth in oil income

ln (Yt)� ln (Yt�1), which is 29:63 percent, which is driven by excessive price volatility during the

sample period.

6 Optimal Solution: An Empirical Example

In this section, we calibrate the model using the parameter estimates presented above, and use it

to study the impact of changes in the behavioral parameters 
 and �, in addition to changes in �

and �2(o), on the optimal allocation and consumption path. It is clear from (15) that the optimal

asset allocation is a linear function of the state vector zt, therefore the optimal allocation changes

over time in response to variation in the investment opportunities, however we can study the
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mean allocation given by E [�t] = A0 +A1E [zt]. Table 5 shows how the optimal asset allocation

changes with di¤erent levels of risk aversion (
), rate of time preference (�) and the variance to

oil income shocks (�2(o)). As the level of risk aversion increases in the range of 
 2 [3; 12], the

investor tends to decrease her holdings of risky assets (equity and bonds) where the total demand

generally declines. In parallel, the investor also decreases her leverage as the short position in

cash (i.e. the risk-free asset) is also declining. However, in contrast to the general decline in

the total demand for equity, the sub-component of total demand that relates to intertemporal

hedging increases. This occurs as a higher 
 leads the investor to increase her reliance on equity

as a good hedge especially given its negative correlation with oil income shocks. In fact, for

very high levels of risk aversion, the demand for equity for normal hedging purposes becomes so

large that it increases the total demand for equity; compare the third and fourth panels of Table

5. As for bonds, the total demand keeps decreasing as 
 increases since bonds have a positive

correlation with oil income shocks.

As the rate of time preference � gets larger, implying a larger weight on the utility of future

consumption, the total demand for equity increases while that for bonds declines. The change

in total leverage is marginal, especially for low values of 
. This indicates that an investor with

a relatively long horizon will opt for a higher share in equity and a larger equity-to-bond ratio

as she capitalizes on the higher excess return on stocks.

To study the impact of oil income volatility, we assume a �xed � = 0:95, and vary the level

of �2(o) by scaling it by the factors reported in the table header: 0:85, 1:00 and 1:15. Note that

the middle column corresponds to the in-sample estimate of �2(o). As the variance of oil income

shocks increase, the investor generally increases her demand for equity relative to bonds. This

is driven by the negative correlation between shocks to oil income and innovations to the excess

return on equity. Still, for most values of 
, the demand for equity induced by the oil hedging

component is very low compared to total demand. However, for 
 = 12, and given an ampli�ed

level of volatility for oil income shocks as reported in the last column, we see a signi�cant increase

in the demand for equity which is now driven by both components: the normal hedging demand

and the oil hedging demand.14

14The reason the demand for hedging against oil appears negligible in most cases can be seen from its formula:

A
(o)
0 =

1

b
��1xx

h
� (1� b)Hx�

0
�� � �(y)0

i
:

With b being 1 or very close to 1 at the optimal path for di¤erent values of 
 and �, the �rst term in square
brackets is mostly zero. Also, the term �

(y)
0 = Hx�

0
�B

(y)
1 equals zero in the limit as b ! 1. This occurs since

B
(y)
1 ! 0 as b! 1; see the discussion in Section 3.5.1.
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� �2(o)
0.90 0.95 0.99 0.85 1.00 1.15


 = 3

Equity (total demand) 129.76 132.67 135.18 131.96 132.67 133.52
Equity (hedging, normal) 27.74 30.64 33.16 29.94 30.64 31.49
Equity (hedging, oil) 0.01 0.01 0.01 0.01 0.01 0.01

Bonds (total demand) 98.33 96.66 95.21 97.06 96.66 96.17
Bonds (hedging, normal) -7.64 -9.31 -10.75 -8.90 -9.31 -9.79
Bonds (hedging, oil) 0.00 0.01 0.00 0.00 0.01 0.01

Cash -128.09 -129.33 -130.39 -129.02 -129.33 -129.69


 = 6

Equity (total demand) 89.05 91.63 93.77 89.25 91.63 94.68
Equity (hedging, normal) 38.01 40.58 42.72 38.21 40.58 43.62
Equity (hedging, oil) 0.01 0.01 0.01 0.01 0.01 0.01

Bonds (total demand) 50.72 49.35 48.20 50.62 49.35 47.71
Bonds (hedging, normal) -2.29 -3.67 -4.82 -2.40 -3.67 -5.31
Bonds (hedging, oil) 0.00 0.00 0.00 0.00 0.00 0.00

Cash -39.77 -40.98 -41.97 -39.86 -40.98 -42.38


 = 9

Equity (total demand) 81.96 84.65 86.87 79.32 84.65 92.24
Equity (hedging, normal) 47.90 50.60 52.81 45.27 50.60 58.18
Equity (hedging, oil) 0.02 0.01 0.02 0.01 0.01 0.02

Bonds (total demand) 34.06 32.57 31.33 35.48 32.57 28.27
Bonds (hedging, normal) -1.32 -2.80 -4.04 0.12 -2.80 -7.10
Bonds (hedging, oil) 0.00 0.00 0.00 0.00 0.00 0.00

Cash -16.02 -17.22 -18.20 -14.48 -17.22 -21.18


 = 12

Equity (total demand) 87.93 91.67 94.92 79.82 91.67 123.36
Equity (hedging, normal) 62.36 66.09 69.29 54.26 66.09 85.28
Equity (hedging, oil) 0.02 0.04 0.07 0.02 0.04 9.53

Bonds (total demand) 21.00 18.77 16.81 25.70 18.77 -2.19
Bonds (hedging, normal) -5.54 -7.78 -9.74 -0.84 -7.78 -30.34
Bonds (hedging, oil) 0.00 0.00 0.00 0.00 0.00 -1.51

Cash -8.93 -10.44 -11.73 -5.52 -10.44 -21.18

Table 5: Optimal asset allocation for varying levels of risk aversion (
), rate of time preference (�) and oil income
variance (�2(o)). We vary the level of �

2
(o) by scaling it by the factors reported in the table header: 0.85, 1.00 and

1.15, where the middle column corresponds to the in-sample estimate of �2(o). The sub-categories in italics refer
to sub-components of total demand which relate to the normal hedging and oil hedging components as discussed
in Section (3.3).

22



With regard to the ratio of equity to bonds in the optimal portfolio, we �nd that for 
 = 6

and 
 = 9, it ranges between 1:76 and 3:62, which is comparable to the ratios seen in the largest

SWFs; see Figure 1. This holds for di¤erent levels of � and �2(o). However, for very low or very

high levels of risk aversion, we see optimal equity-to-bond ratios that are either too low or too

high compared to observed actuals at existing funds.

We now turn to discussing the impact of changes in the correlation structure between shocks

to oil income and the innovations to the �nancial market variables by changing �. This not only

changes the loadings of �t+1 on the innovations in �t+1, but it also changes the proportion of

the variance in oil income that is explained by the �nancial shocks.15 The results are presented

in Table 6 where we set the value of � equal to 0:95. We assume three di¤erent cases for the

correlation structure, where the in-sample estimate of � (given in the �rst column) is used as a

benchmark. First, we assume that � is a multiple of the in-sample estimate such that we use 2��

and 2:7�� for cases 1 and 2, respectively. For case 3, we only change �2 and �4, which correspond

to the loadings on the innovations to excess equity returns and the dividend yield, respectively.

Speci�cally, for case 3 we assume �2 = 3:10 and �4 = 40:73, while �1 and �3 remain unchanged.

For case 1, doubling the loadings on the innovations to the �nancial market variables lowers

the proportion of the variance of oil income shocks that is explained by the oil idiosyncratic

shock from 0:83 (based on in-sample estimates) to about 0:53. This means that oil income is

now more responsive to the �nancial market shocks. For low levels of risk aversion, the results

do not show marked di¤erences across the three cases. However as 
 increases, the investor

allocates less to equity and more to bonds, resulting in a decline in the optimal equity-to-bond

ratio. In case 2, in which � is scaled by a larger factor, this tendency is further reinforced. For

a risk-averse investor, this is an optimal response given a �nancial environment which highly

correlated with oil income. This can be understood as a relative �ight to safety, which is o¤ered

by bonds. Interestingly for case 3, in which �2 and �4 are not only larger in magnitude but also

have positive signs, the optimal asset allocation is roughly similar to that of case 1. This could

be due to the fact that the relative proportion of oil income shocks that is driven by �nancial

shocks is equal in both cases.

In Figure 2, we present the historical allocation obtained using (15) by plotting the data-

driven optimal historical allocation between the two classes of risky assets: equity and bonds.

To avoid excessive �uctuations driven by the �uctuations in zt, we use a �ve-year end-of-period

moving average. Signi�cant changes in the optimal historical allocation tracks surprisingly well

15Note that the variance of �t+1 is decomposed as �
0
��� + �

2
(o).
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Correlation structure
In-sample Case 1 Case 2 Case 3


 = 3

Equity (total demand) 132.67 131.74 130.64 131.70
Equity (hedging, normal) 30.64 29.71 28.60 29.71
Equity (hedging, oil) 0.01 0.02 0.02 -0.03

Bonds (total demand) 96.66 97.20 97.84 97.21
Bonds (hedging, normal) -9.31 -8.77 -8.13 -8.77
Bonds (hedging, oil) 0.01 0.01 0.01 0.02

Cash -129.33 -128.94 -128.47 -128.91


 = 6

Equity (total demand) 91.63 88.52 85.06 88.45
Equity (hedging, normal) 40.58 37.47 34.01 37.47
Equity (hedging, oil) 0.01 0.02 0.02 -0.06

Bonds (total demand) 49.35 51.01 52.80 51.07
Bonds (hedging, normal) -3.67 -2.01 -0.22 -2.00
Bonds (hedging, oil) 0.00 0.01 0.01 0.05

Cash -40.98 -39.52 -37.86 -39.51


 = 9

Equity (total demand) 84.65 77.77 70.94 77.68
Equity (hedging, normal) 50.60 43.71 36.88 43.72
Equity (hedging, oil) 0.01 0.03 0.02 -0.08

Bonds (total demand) 32.57 36.32 39.83 36.41
Bonds (hedging, normal) -2.80 0.95 4.47 0.98
Bonds (hedging, oil) 0.00 0.01 0.01 0.06

Cash -17.22 -14.09 -10.77 -14.09


 = 12

Equity (total demand) 91.67 76.80 64.99 76.54
Equity (hedging, normal) 66.09 51.23 39.42 51.25
Equity (hedging, oil) 0.04 0.03 0.03 -0.28

Bonds (total demand) 18.77 27.40 33.67 27.74
Bonds (hedging, normal) -7.78 0.86 7.13 0.94
Bonds (hedging, oil) 0.00 0.00 0.00 0.23

Cash -10.44 -4.20 1.34 -4.28

Variance proportion explained by �2(o) 0.84 0.53 0.14 0.53

Table 6: Optimal asset allocation for di¤erent correlation structures between oil income shocks and innovations
to the �nancial market variables. The �rst column "In-sample" refers to the in-sample estimates, while cases 1
and 2 refer to di¤erent correlation structures in which the parameters in � are multiples of the in-sample
estimates. Speci�cally, we use 2�� and 2:7�� for cases 1 and 2, respectively. For case 3, we only change �2 and
�4, such that �2 = 3:10 and �4 = 40:73, while �1 and �3 remain unchanged. The sub-categories in italics refer to
sub-components of total demand which relate to the normal hedging and oil hedging components as discussed in
Section (3.3).
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Figure 2: Optimal historical allocation to equity and bonds over the sample period 1980-2016. We use a �ve-year
end-of-period moving average. The shares are derived using the optimal rule in (15) and the historical zt series.

the equity boom and bust cycles over the sample period. For instance, note the gradual decline in

the optimal allocation to equity prior to the bursting of the dotcom bubble in 2000. Between 1995

and 1999, excess equity returns averaged around 23:5 percent annually. With overpriced stocks

and declining dividend yields, the optimal response was to change the equity-bond mix in favor of

bonds. Also, note that the VAR model in (4) implies mean reversion to the unconditional mean

given by
�
I� b�1��1 b�0 = � 0:024 0:080 0:034 0:021

�0
, in which the steady-state excess rate

of return on equity is only 8 percent, thus strong mean reversion was bound to happen.

After the 2000 crash in equity markets, the optimal response was to rebalance the portfolio

in favor of equity. Similar behavior is evident during the �nancial crisis of 2008, and the optimal

allocation since then points to a gradual change in favor of equity. Some of the world�s largest

funds have actually changed their equity-bond mix during that period by incrementally increasing

the share of equity in their allocations, as in the case of the Norwegian Government Pension Fund

(Global) and also some of the SWFs in the Middle East. Towards the end of the sample period,

this trend is partially reversed given the rally in equity markets in the last few years, and an

expectation of an imminent correction implied by mean reversion.

From (16), we can see that optimal consumption depends on the path of ft, yt and zt. In the

evolution of ct, b plays a crucial role as it represents the marginal propensity to consume out of
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wealth. It also determines the weight on wealth ft, relative to the weight on the stream of oil

income yt. The value of b is determined by the optimal (mean) ratios of wealth to income and

consumption to income, and as discussed in Section 3.5.1, the value of b tends to be close to 1

when dealing with a mature fund as in the case of Norway, for instance.

In Table 7, we can see the impact of varying 
, � and �2(o) on the optimal (mean) consumption-

to-wealth ratio E [Ct=Ft].16 We �rst note that for a �xed 
, the optimal consumption-to-wealth

ratio declines uniformly except when 
 is very high (
 = 12) and for a high level of oil income

volatility; see the last column of the bottom panel.17 This behavior is expected as an increase in

� indicates a larger weight on the utility of future consumption which leads to lower consumption

out of wealth to speed up the wealth accumulation process. Similar behavior is evident when

�2(o) gets larger. Higher variability in the stream of oil income leads the investor to scale down

her consumption out of wealth to achieve a smoother consumption path.

With regard to 
, and as the level of risk aversion increases, there is also a general decline

in consumption out of wealth. This occurs for di¤erent levels of � and �2(o), with the exception

indicated above. In the majority of the reported cases, the optimal value of b is close to 1. This

means the investor behaves rather similarly to an investor at retirement since all consumption

is �nanced by wealth, and the elasticity of consumption with respect to income (1� b) becomes

close to zero; see Veceira (2001) for a related discussion. This forces the investor to follow a

conservative investment strategy as discussed earlier, since she tends to reduce the equity-to-

bond ratio in her allocation. On the other hand, we �nd the optimal value of b to be around

0:79 when �2(o) is scaled up by 15 percent and given a large 
. This case resembles the behavior

of an investor that is still a bit further from retirement, and thus her annual stream of income

still plays a role in determining her consumption. This investor can a¤ord to take on more risk

and allocates a relatively higher share to equity. In addition, this investor�s consumption out of

wealth, E [Ct=Ft], would be lower since her consumption still partly depends on the stochastic

stream of income.

It is interesting to note that the observed behavior of a SWF such as that of Norway is closest

to the results in the panels corresponding to 
 = 9 and 
 = 12, with oil income volatility as

reported in the middle column, or the right column. Since 2001, the �scal rule in Norway has

been to withdraw around 4 percent out of the fund, and it is expected to be reduced to 3 percent

16Note that the model solution gives the optimal values for the logarithm of Ct and Ft. When obtaining the
expectation E [Ct=Ft], we ignore Jensen�s inequality term.
17We note that the value of the optimal b is smaller for this parameter con�guration as its value is about 0:79,

which explains the marginal rise in the optimal consumption out of wealth compared to a lower value of 
.
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�2(o)
0.85 1.00 1.15


 = 3

0.90 0.136 0.132 0.129
� 0.95 0.121 0.118 0.114

0.99 0.110 0.106 0.102


 = 6

0.90 0.100 0.094 0.086
� 0.95 0.093 0.086 0.078

0.99 0.087 0.080 0.072


 = 9

0.90 0.077 0.066 0.054
� 0.95 0.072 0.061 0.048

0.99 0.068 0.057 0.044


 = 12

0.90 0.057 0.041 0.029
� 0.95 0.053 0.036 0.036

0.99 0.050 0.032 0.045

Table 7: Optimal consumption-to-wealth ratio for di¤erent levels of risk aversion (
), rate of time preference (�)
and oil income variance (�2(o)). We vary the level of �

2
(o) by scaling it by the factors reported in the table header:

0.85, 1.00 and 1.15, where the middle column corresponds to the in-sample estimate of �2(o).

in the near future given the decline in the annual rate of return on the fund.

Finally, in Figure 3, we present projections of the optimal asset allocation until 2030. The

objective is to show how fast the model projections converge to the steady state. For each year

starting 2017, and letting s denote the forecast horizon, the optimal allocation is obtained using

zt+s = b�0 + b�1zt+s�1;
where b�0 and b�1 are the in-sample estimates. The results show that for di¤erent levels of 
,

there should be a change in the equity-bond mix in favor of bonds. The extent of rebalancing

required depends of course on 
. For the more moderate values of 
 (e.g. 
 = 6 and 
 = 9),

we see convergence to equity and bonds shares that imply an equity-to-bond ratio in the range

of 1:36 to 1:88. These optimal ratios are somewhat lower than what is seen today in some of

the largest SWFs. For instance, in Norway and Saudi Arabia, the ratio is around 1.95, while

for other funds it often exceeds 3.18 It would be interesting to observe how this ratio evolves at

18 It should be noted, however, that some of these funds allocate a signi�cant share to "other" asset classes,
while we restrict our analysis to only equity and bonds for expositional convenience.
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Figure 3: Projections of the optimal asset allocation for a mature fund until 2030. The assumed value of � is
equal to 0.95, and using the in-sample estimate of �2(o).

large SWFs over the coming years, as both the equity and bond markets revert to their historical

mean rates of return.

7 Conclusion

This paper considers the problem of optimal asset allocation for a SWF subject to having a

stochastic stream of oil income in the intertemporal budget constraint. Using CRRA utility, we

assume the fund�s objective is to maximize the discounted utility of intertemporal consumption,

and use a log-linear approximation to solve for the model�s optimal asset allocation and optimal

consumption path. We calibrate the model using parameter estimates based on historical data

for U.S. equity and bonds as two broad asset classes, in addition to data on the annual net cash

�ow from oil for the Norwegian state.

Using the calibrated model, we show how the optimal asset allocation and path for con-

sumption change with variation in the model�s main parameters, namely risk aversion, rate of

time preference and the variance of oil income shocks. We also study how the optimal alloca-

tion changes with the correlation structure between oil income shocks and the innovations to

the excess returns on risky assets. The model�s predictions are consistent with predictions from
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comparable models that studied optimal asset allocation subject to receiving stochastic labor

income. They are also consistent to a large extent with what is observed in existing funds, espe-

cially those that are mature in the sense that they have accumulated a signi�cant wealth bu¤er

relative to the annual stream of oil income, as in, for example, the Government Pension Fund

(Global) of Norway.

An interesting aspect of the SWF optimal asset allocation problem is the fact that the

stochastic stream of income is partially under the optimizer�s control, that is the rate of oil

extraction can also be considered a control variable in the optimization problem. Allowing the

rate of extraction to be an additional control variable is considered in Scherer (2011) and van den

Bremer et al. (2016), and in the latter study the problem is largely viewed as the optimal rate of

transformation of under- to above-ground wealth. This relates to the classical work of Hotelling

(1931), and also subsequent contributions by Pindyck (1978, 1981), among others. Our model

does not address this issue, and it remains an interesting avenue for future research to generalize

our model to incorporate the rate of optimal extraction as an additional control variable.
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A Appendix A: Proof of Proposition 1

In order to �nd the expressions for the optimal portfolio, we use the log-Euler equation. Sub-

tracting the log Euler equation with i = 0 from the log Euler equation, we obtain

Et[ri;t+1 � r0;t+1] +
1

2
Vt[ri;t+1 � r0;t+1] = Covt (
[ct+1 � ct]; ri;t+1)

� Covt (
[ct+1 � ct]; r0;t+1)

� 1

2
[V art(ri;t+1)� V art(r0;t+1)� V art(ri;t+1 � r0;t+1)] :

First note that

1

2
(V art(ri;t+1)� V art(r0;t+1)� V art(ri;t+1 � r0;t+1)) = Covt(ri;t+1; r0;t+1)� V art(r0;t+1):

Using the trivial identity

ct+1 � ct = ct+1 � yt+1 + yt+1 � yt + yt � ct

and the conjuncture

ct+1 � yt+1 = a+ b(ft+1 � yt+1) +B
0
1zt+1 + z

0
t+1B2zt+1;

we �nd

Covt (ct+1 � ct; ri;t+1) = Covt (ct+1 � yt+1 + yt+1 � yt; ri;t+1)

= Covt (ct+1 � yt+1; ri;t+1) + Covt (yt+1 � yt; ri;t+1)

= Covt

�
b(ft+1 � yt+1) +B

0
1zt+1 + z

0
t+1B2zt+1; ri;t+1

�
+ Covt (yt+1 � yt; ri;t+1) :

Combining the last equation with the budget equation, we �nd

Covt (ct+1 � ct; ri;t+1) = Covt

�
B
0
1zt+1 + z

0
t+1B2zt+1; ri;t+1

�
+(1� b)Covt (yt+1 � yt; ri;t+1) + bCovt (rF;t+1; ri;t+1) :

We de�ne

�F;t = [Covt (rF;t+1; ri;t+1)]i=1;:::;n ;

�F;0;t = Covt (rF;t+1; r0;t+1) ;

�0;0;t = Vt (r0;t+1) ;

�0;t = [Covt (r0;t+1; ri;t+1)]i=1;:::;n ;
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�Y;t = [Covt (yt+1 � yt; ri;t+1)]i=1;:::;n ;

and

�Y;0;t = Covt (yt+1 � yt; r0;t+1) :

We have

�F;t � �F;0;t = �xx�t + �0x;

�0;t � �0;0;t = �0x;

and

�Y;t � �Y;0;t = Hx���;

where Hx is a selection matrix that selects the vector of excess returns from the state vector.

Following Campbell et al. (2003), we �nd

Covt

�
B
0
1zt+1 + z

0
t+1B2zt+1; ri;t+1 � r0;t+1

�
=
�
�(i)�

�0
B1 +

�
�(i)�

�0
(B2 +B

0
2)(�0 +�1zt);

where �(i)� denotes the i-th column of �� . We de�ne

M =
h
Covt

�
B
0
1zt+1 + z

0
t+1B2zt+1; ri;t+1 � r0;t+1

�i
i=1;:::;n

We can state that

M = �0 + �1zt;

with

�0 = Hx�
0
�

�
B1 + (B2 +B

0
2)�0

�
and

�1 = Hx�
0
�

�
B2 +B

0
2

�
�1:

Using the matrices de�ned above, the log-Euler equation could be written as

Hx�0 +Hx�1zt +
1

2
�2x = 
(1� b)Hx�

0
�� + 
M

+b
(�F;t � �F;0;t)� (�0;t � �0;0;t);

where the Hx is a selection matrix that selects the vector of excess returns from the full state

vector. It follows that

Hx�0 +Hx�1zt +
1

2
�2x = 
(1� b)Hx�

0
�� + 
(�0 + �1zt)

+b
(�xx�t + �0x)� �0x:
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Then, we obtain

�t = A0 +A1zt;

with

A0 =
1

b

��1xx

�
Hx�0 +

1

2
�2x + �0x � 
(1� b)Hx�

0
�� � 
�0

�
� �0x;

and

A1 =
1

b

��1xx [Hx�1 � 
�1] :

Now, we need to show that optimal consumption is a quadratic function of the state variables.

Using the Euler equation for i = F , we �nd

Et [ct+1 � ct] =
log(�)



+ �F;t +

Et [rF;t+1]



; (A.1)

where

�F;t =



2
V art

�
ct+1 � ct �

rF;t+1



�
:

Using the equation Eqn.A.1 combined with

ct+1 � ct = ct+1 � yt+1 + yt+1 � yt + yt � ct;

ct+1 � yt+1 = a+ b(ft+1 � yt+1) +B
0
1zt+1 + z

0
t+1B2zt+1 + g + �

0
�t+1 + �(o)�

(o)
t+1

and the budget equation, we obtain

ct � yt =
1

1 + b�c

�
a+ bk + (1� b)g � log(�)



+ b�f (ft � yt)

�
+

1

1 + b�c

��
b� 1




�
Et [rF;t+1]� �F;t + Et

h
B
0
1zt+1 + z

0
t+1B2zt+1

i�
:

The conditional expectations are calculated as follows. First note that

B
0
1zt+1 = B

0
1(�0 +�1zt + �t+1)

= B
0
1�0 +B

0
1�1zt +B

0
1�t+1;

and

z
0
t+1B2zt+1 = (�0 +�1zt + �t+1)

0
B2(�0 +�1zt + �t+1)

= �
0
0B2�0 +�

0
0B2�1zt +�

0
0B2�t+1

z
0
t�

0
1B2�0 + z

0
t�

0
1B2�1zt + z

0
t�

0
1B2�t+1

�
0
t+1B2�0 + �

0
t+1B2�1zt + �

0
t+1B2�t+1:
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Recall that

�t+1 � N (0;��) ;

It implies

Et

h
B
0
1zt+1

i
= B

0
1�0 +B

0
1�1zt;

and

Et

h
z
0
t+1B2zt+1

i
= �

0
0B2�0 +�

0
0(B2 +B

0
2)�1zt + z

0
t�

0
1B2�1zt + vec(B2)

0vec(��):

Following Campbell et al. (2003), one can write

Et [rF;t+1] = �0 + �1zt + z
0
t�2zt;

with

�0 = A
0
0Hx�0 +H1�0 +

1

2
A
0
0�
2
x �

1

2
A
0
0�xxA0;

�1 = �
0
0H

0
xA1 +A

0
0Hx�1 +H1�1 +

1

2
�2xA

0
1 �A

0
0�xxA1

and

�2 = A
0
1Hx�1 �

1

2

�
A
0
1�xxA1

�
:

We can also show that �F;t has a quadratic expression in terms of zt. We have

ct+1 � ct �
rF;t+1



= (1� b)(yt+1 � yt) +
�
b� 1




�
rF;t+1

+B
0
1zt+1 + z

0
t+1B

0
2zt+1;

where

yt+1 � yt = �
0
�t+1 + �(o)�

(o)
t+1 + g;

rF;t+1 =
h
A
0
0Hx +H1

i
�t+1 + z

0
tA1Hx�t+1 + t terms and constants:

and

B
0
1zt+1 + z

0
t+1B

0
2zt+1 =

h
B
0
1 +�

0
0(B2 +B

0
2)
i
�t+1 + z

0
t�

0
1(B2 +B

0
2)�t+1

+�
0
t+1B2�t+1 + t terms and constants:

Ignoring constants and t terms, one can write the argument of the variance V art
h
ct+1 � ct � rF;t+1




i
as follows

ct+1 � ct �
rF;t+1



=
�

1 + z

0
t
2

�
�t+1 + �

0
t+1B2�t+1 + �(o)�

(o)
t+1;
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where


1 = (1� b)�
0
+

�
b� 1




�h
A
0
0Hx +H1

i
+
h
B
0
1 +�

0
0(B2 +B

0
2)
i
;

and


2 =

�
b� 1




�
A1Hx +�

0
1(B2 +B

0
2):

Note that 
1 could be written as


1 = 

(y)
1 +


(z)
1 ;

where



(y)
1 = (1� b)�0 ;

and



(z)
1 =

�
b� 1




�h
A
0
0Hx +H1

i
+
h
B
0
1 +�

0
0(B2 +B

0
2)
i
:

Thus,

�F;t = V0 + V1zt + ztV2z
0
t;

with

V0 =



2

h
�2(o) +
1��


0
1 + vec (B2)

0
V art

h
vec

�
�t+1�

0
t+1

�i
vec (B2)

i
;

V1 = 

h

1��


0
2

i
;

and

V2 =



2

�

2��


0
2

�
:

The expression for V1 could be given as

V1 = V
(y)
1 + V

(z)
1 ;

with

V
(y)
1 = 


h


(y)
1 ��


0
2

i
;

and

V
(z)
1 = 


h


(z)
1 ��


0
2

i
:

Similarly, the expression for V0 has the following decomposition

V0 = V
(y)
0 + V

(z)
0 ;

where

V
(y)
0 =




2

h
�2(o) +


(y)
1 ��


(y)0

1 +

(z)
1 ��


(y)0

1 +

(y)
1 ��


(z)0

1

i
;
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and

V
(z)
0 =




2

h


(z)
1 ��


(z)0

1 + vec (B2)
0
V art

h
vec

�
�t+1�

0
t+1

�i
vec (B2)

i
:

Note that 
(z)1 appears in V (y)0 but its term is of a lower order of magnitude. This implies

ct � yt = a+ b(ft � yt) +B
0
1zt + z

0
tB2zt;

where

a =
1

b�c

�
bk + (1� b)g � log(�)



+

�
1� 1




�
�0 � V0

�
+
1

b�c

h
B
0
1�0 +�

0
0B2�0 + vec(B2)

0vec(��)
i
;

b =
�f � 1
�c

;

B1 = [�fIn � �1]�1
��
1� 1




�
�1 � V (y)1 � V (z)1 +�

0
0(B2 +B

0
2)�1

�0
:

B2 =
1

�f

��
1� 1




�
�2 � V2 +�

0
1B2�1

�
:

The coe¢ cient a could be written as

a = a(y) + a(z);

with

a(y) =
1

�f � 1

h
(1� b)g � V (y)0

i

a(z) =
1

�f � 1

�
bk � log(�)



+

�
1� 1




�
�0 � V (z)0

�
+

1

�f � 1

h
B
0
1�0 +�

0
0B2�0 + vec(B2)

0vec(��)
i
:

Also, note that B1 is as follows

B1 = B
(y)
1 +B

(z)
1 ;

where

B
(y)
1 = �[�fIn � �1]�1

h
V
(y)
1

i0
;

and

B
(z)
1 = [�fIn � �1]�1

��
1� 1




�
�1 � V (z)1 +�

0
0(B2 +B

0
2)�1

�0
:

It follows that

�0 = �
(y)
0 + �

(z)
0 ;
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with

�
(y)
0 = Hx�

0
�B

(y)
1

and

�
(z)
0 = Hx�

0
�

�
B
(z)
1 + (B2 +B

0
2)�0

�
:

Then, we �nd the following decomposition of the optimal solution

A0 = A
(m)
0 +A

(h)
0 +A

(o)
0 ;

such that

A
(m)
0 =

1

b

��1xx

�
Hx�0 +

1

2
�2x + �0x

�
� �0x;

A
(h)
0 =

1

b
��1xx

h
�
(z)
0

i
;

and

A
(o)
0 =

1

b
��1xx

h
�(1� b)Hx�

0
�� � �(y)0

i
:

We also have

A1 = A
(m)
1 +A

(h)
1 ;

where

A
(m)
1 =

1

b

��1xx [Hx�1] ;

and

A
(h)
1 =

�1
b
��1xx�1:

The optimal consumption could be written as

ct = a
(y) + a(z) + bft + (1� b)yt +

�
B
(y)0

1 +B
(z)0

1

�
zt + z

0
tB2zt;

with B01 = B
(y)0

1 +B
(z)0

1 .
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