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Abstract 

This paper investigates the impact of price limits on volatility dynamics in the Egyptian Stock 
Exchange. A variety of mean and variance specifications in GARCH type models (GARCH, 
EGARCH, GJR, and APARCH), and four different error distributions (Normal, Student-t, 
GED, and Skewed-t) are utilized.  Results from examining a split sample suggest significant 
changes in the time varying volatility process.  In-sample results, prior to the imposition of 
price limits exhibit leptokurtosis, yet showing no sign of the widely cited leverage effect.  In-
sample results, after the imposition of price limits display both leptokurtosis and the leverage 
effect.  Out-of-sample forecasts depict the leverage effects, when present, but provide 
conflicting results regarding the distribution. 

 
 
 
 
 
 

 
  تلخيص

 

وقد تم استـخدام .  دود السعرية على ديناميكيات التغير فى البورصة المصريةتفحـص هذه الورقـة أثـر الح
  ,GARCH    (GARCH, EGARCH, GJRمجموعة متنوعة من صيغ  المتوسط الحسابى والتباين، فى نماذج 

APARCH), كما تم استخدام أربعة توزيعات للخطأ ،)(Normal, Student-t, GED, and Skewed-t . وتشير
وقد أظهرت النتائج داخل  العينة، قبل فرض . نتائج اختبار العينة المنفصلة إلى وجود تغيرات واضحة مع تغير الزمن

 leverage(، إلا إنها لم تظهر أى اشارة لوجود أثر الرافعة  ) leptokurtosis( الحدود السعرية،  وجود تفلطح 
effect  ( أما بالنسبة لنتائج داخل العينة، بعد فرض الحدود السعرية، فقد أظهرت .  الذى  كثيراً ما تمت الإشارة اليه

من جانب آخر، تشير  التوقعات بين العينات، عند توافرها،  إلى .  التفلطح وأثر الرافعةهذه النتائج وجود كل من 
  . فيما يتعلق بالتوزيعوجود أثر الرافعة؛  إلا إنها تظهر نتائج متباينة
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1. Introduction  
Financial time series, unlike other series, usually exhibit a set of peculiar characteristics. First, 
Mandelbrot (1963) observed that financial returns displayed volatility clustering. Two years later, 
Fama (1965) demonstrated that financial data exhibit leptokurtosis, or in other words, the 
distribution of their returns tend to be fat-tailed. Finally, Black (1976) introduced us to the 
“leverage effect,” which simply means that volatility is higher after negative shocks than after 
positive shocks of the same magnitude. 

Over the past two decades, immense efforts have been devoted to modeling and forecasting the 
movement of stock returns and other financial time series. One of the cornerstones in this area of 
research can be attributed to Engle (1982), who introduced the standard Autoregressive Conditional 
Heteroskedasticity (ARCH) model. Engle’s process proposed to model time-varying conditional 
volatility using past innovations to estimate the variance of the series. Bollerslev (1986), seeing that 
high ARCH orders are sometimes needed to catch the dynamics of the conditional variance, 
introduced the Generalized ARCH (GARCH) model, which modeled time-varying volatility as a 
function of both past disturbances and past volatility. Today, the ARCH and GARCH literature has 
grown enormously and its applications have expanded from stock returns to interest rates, foreign 
exchange, inflation and so on. Excellent survey papers by Bollerslev, Chou, and Kroner (1992), as 
well as, Bollerslev, Engle and Nelson (1994) cite more than 200 papers on this subject. The 
importance of estimating and forecasting financial market volatility has expanded even further as a 
result of its “importance in the portfolio selection and asset management processes, in addition to 
its importance in the pricing of primary and derivative assets” (Engle and Ng 1993; p.1749).  

Engle and Ng (1993) note that although “researchers agree that volatility is predictable in many 
asset markets, they differ on how this volatility predictability should be modeled” (p.1749) within 
an ARCH/GARCH context. As a result, a variety of new extensions were produced, some of which 
were motivated by pure theory, while others were simply empirical trial-and-error suggestions. The 
most interesting of these approaches targeted the structural form of the GARCH model by allowing 
for “asymmetries” to capture the aforementioned “leverage effect.” Among the most widespread are 
the Exponential GARCH (EGARCH) of Nelson (1991); the so-called (GJR) of Glosten, 
Jagannathan and Runkle (1993); and the Asymmetric Power ARCH (APARCH) of Ding, Granger 
and Engle (1993).1  

Another area heavily researched in the GARCH world is the method of estimation. GARCH models 
are estimated using a Maximum Likelihood (ML) approach.2 ML assumes and maximizes a density 
function3 for the parameters that are conditional on a set of sample outcomes. Bollerslev and 
Wooldridge (1992) propose a Quasi Maximum Likelihood (QML) technique that adjusts for small 
deviations from normality. This technique’s estimator, however, is inefficient, as the deviation from 
normality increases making the “fully efficient ML estimates more preferred” (Bollerslev et al 
1992; p.11). Thus there is clearly a penalty imposed for being unaware of the true conditional 
density. This has consequently led to the use of non-normal distributions to better model excessive 
third and fourth moments “because it may be expected that excess kurtosis and skewness displayed 
by the residuals of conditional heteroscedasticity models will be reduced when a more appropriate 
distribution is used”(Lambert and Laurent 2001; p.3). Bollerslev (1987); Baillie and Bollerslev 
(1989); Kaiser (1996); and Beine, Laurent, and Lecourt (2000), among others, use Student-t 
distribution while Nelson (1991) and Kaiser (1996) suggest the Generalized Exponential 

                                                            
1 Other famous asymmetric GARCH include the Threshold GARCH (TGARCH) of Zakoian (1994), the Quadratic 
GARCH (QGARCH) of Sentana (1995), the Volatility Switching ARCH (VS-ARCH) of Fornari and Mele (1996), and 
the Logistic Smooth Transition ARCH (LST-ARCH) of Gonzales-Rivera (1996) and Hagerud (1996). 
2 As an alternative to ML and QML estimation, GARCH models can also be estimated directly with Generalized 
Method of Moments (GMM). This was suggested and implemented by GJR (1991).    
3 Known as the Likelihood Function.  
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Distribution (GED). Other studies include mixture distributions such as the normal-lognormal 
(Hsieh (1989)) or the Bernoulli-normal (Vlaar and Palm (1993)). Finally, to capture skewness, 
Fernandez and Steel (1998) and Lambert and Laurent (2000,2001) use a skewed student-t 
distribution.  

Asymmetric GARCH models have been used in several empirical papers (e.g., see, Pagan and 
Schwert (1990); Brailsford and Faff (1996); Hagerud (1997); Franses, Neele, and Van Dijk (1998); 
or Loudon, Watt, and Yadav (2000)). Furthermore, comparing the effect of adding different 
densities has been explored on many occasions (e.g., see Hsieh (1989); Baillie and Bollerslev 
(1989); Lambert and Laurent, (2001)).  

This paper adds to the literature in three ways. First, it empirically investigates and tests to what 
extent asymmetries in the theoretical model, as well as the imposed distributions, might have 
influenced the data generating process for Egyptian Stock Exchange (ESE) time series.4 The paper 
examines four models: GARCH, EGARCH, GJR and APARCH, and introduces a wider variety of 
densities (Normal, Student-t, Skewed Student-t and GED). Second, this work attempts to determine 
the multi-period forecasting abilities of these GARCH-type models and to demonstrate whether 
they ameliorate when looking at different “actual” volatility proxies. Finally, the paper examines 
whether the performance of these four models changes significantly as a result of shifts in policies 
or regulations affecting the trading environment.5 

The structure of this paper is organized as follows: Section 2 describes the theoretical basics of the 
models used. In Section 3, the estimation procedures as well as the different densities are discussed. 
In Section 4, the tests used for the specification of the conditional mean and variances are 
formulated. The data is described in Section 5. Empirical findings of specification tests, estimations 
and forecasting are presented in Section 6. In closing a summary and an outlook for further research 
is given. Detailed tables showing characteristics of the data, the estimation, and the forecast results, 
as well as several graphs that visualize some properties of the time series, can be found in the 
appendix. 

2. Theoretical Basics 
Let the adjusted closing price of a market index at time t be denoted by Pt. Stock market returns Rt 
throughout this paper are defined as continuously compounded or (log) returns at time t. Rt 
measured as the natural log difference in the closing market index between two consecutive trading 
days {ln {|Pt1| / |Pt-1| } = ln (Pt) - ln (Pt-1)} and are assumed to follow the AR(p)-process: 

tit

p

i
it RR εϕϕ ++= −

=
∑

1
0          (1) 

where εt denotes a discrete-time stochastic process taking the form:  

ttt z σε =            (2) 

where zt ~ iid(0,1), and σt is the conditional variance of return at time t, whose dynamics are 
modeled using ARCH/GARCH type specifications.  

Bollerslev’s (1986)6 simple GARCH model assumes that the time-varying variance is generated by: 

                                                            
4 This is the first such study to examine the ESE. 
5 The introduction of symmetric price limits in February of 1997. 
6 It is straightforward to show that Bollerslev’s (1986) GARCH model is based on the infinite ARCH model introduced 
by Engle (1982). 
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where γ,α, and β are non-negative constants. For the GARCH process to be defined, it is required 
that α > 0. 

The first asymmetric GARCH model considered is the EGARCH model of Nelson (1991), which 
looks at the conditional variance and tries to accommodate for the asymmetric relation between 
stock returns and volatility changes. Nelson implements that by including an adjusting function g(.) 
in the conditional variance equation, which in turn becomes expressed by: 
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where 
t

t
tz

σ
ε

= is the normalized residual series. The value of g(zt) is a function of both the 

magnitude and sign of zt and is expressed as: 

{
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The value [ ]tzE  changes depending on the assumption made on the unconditional density of zt. 
Thus, for the normal distribution: 
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For the skewed Student-t distribution: 
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where υ denotes the degrees of freedom, 2 < υ ≤ ∞, Γ(.) is the gamma function and ξ is a parameter 
for asymmetry7. 

For the symmetric student-t distribution, (7) will apply, with the small adjustment of ξ = 1. 

Finally, for the GED: 
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Thus, we can conclude that the EGARCH model differs from the standard GARCH model in two 
main respects. “First, it allows positive and negative shocks to have a different impact on volatility. 
Second, the EGARCH model allows big shocks to have a greater impact on volatility than the 
standard GARCH model” (Engle and Ng 1993; p.1753). 

                                                            
7 For more details see Lambert and Laurent (2001). 
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The GJR model of Glosten, Jagannathan and Runkle (1993)8, is given by: 

2

1

22

1
0

2 )( jt

p

j
jititiit

q

i
it S −

=
−

−
−−

=
∑∑ +++= σβεωεαγσ       (9) 

where −
tS  is an indicator function that takes the value of one when 1−tε < 0 and zero otherwise. It 

can be seen clearly that “this model assumes the impact of 2
tε  on the conditional variance 2

tσ is 
different when tε is positive or negative” (Laurent & Peters; p.31). In sum, it assumes that negative 
shocks have a higher impact than positive ones. 

Ding, Granger, and Engle (1993) propose the Asymmetric Power ARCH (APARCH). The 
APARCH model can be expressed as: 
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where, 0>δ  and –1 < iτ  < 1 (i = 1,…,q). This model’s strength results from the fact that “it 
couples the flexibility of a varying exponent with the asymmetry coefficient (to take the “leverage 
effect” into account)” (Laurent and Peters 2002; p.31). The APARCH model includes several other 
ARCH extensions as special cases9: 

 The ARCH of Engle (1982), when ,2=δ  τi = 0 (i= 1,….p) and βj = 0 (j= 1,…p). 
 The GARCH of Bollerslev (1986), when ,2=δ  τi = 0 (i= 1,….p). 
 The GJR of Glosten, Jaganathan and Runkle (1993), when .2=δ  
 The TARCH of Zakoian (1994) when .1=δ  

Engle and Ng (1993) summarize how the shocks (news) of the aforementioned “asymmetric 
volatility models capture the leverage effect by allowing either the slope of the two sides of the 

news impact curve to differ or the center of the news curve to locate at a point where it−ε  is 
positive” 10 (p.1754). In the standard GARCH model, this curve is a quadratic function centered on 

it−ε  = 0. For the EGARCH, it has its minimum at it−ε  = 0, and exponentially increases in both 
directions with different parameters. GJR captures asymmetry as its news impact curve has a 
steeper slope on its negative side than on its positive one. Finally, APARCH detects the asymmetry 
by allowing its news impact curve to be centered at a positive it−ε .  

It is very important to distinguish how asymmetric shocks are incorporated into volatility estimates 
for the variety of models that are studied. This importance stems from the vitality of volatility 
predictions on areas such as portfolio selection, asset pricing, and option pricing. Engle and Ng 
(1993) provide the following example: After a major unexpected price drop, the predictable market 
volatilities given by different GARCH type models will be highly varied. “Given that predictable 

                                                            
8 The Threshold GARCH (TGARCH) model of Zakoian (1994) is very similar to the GJR but models the conditional 
standard deviation instead of the conditional variance. 
9 See Ding, Granger and Engle (1993) and Laurent and Peters (2002) for developments of these conclusions.  
10 Engle and Ng (1993) make a comparison among the standard GARCH model and the EGARCH, GJR, and 
APARCH and suggest an increasing metric by which to analyze the effect of news on conditional heteroskedasticity. 
Holding constant the information dated at t-2, they examine the implied relation between εt-1 and σt. They call this 
curve, with all lagged conditional variances evaluated at the level of the unconditional variance of the stock return, the 
news impact curve because it relates past return shocks (news) to current volatility. This curve measures how new 
information is incorporated into volatility estimates using the various proposed models. See Engle and Ng (1993) for 
methods of extrapolating news impact curves for a wide variety of models. 
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market volatility is related to market risk premium, different models will imply very different risk 
premiums, and hence different risk premiums for individual stocks under a conditional version of 
the CAPM” (p.1755). Engle and Ng also note that asymmetric shocks “have important implications 
for option pricing…because stock return volatility is a major factor in determining option prices” 
(p.1756). All the outlined concerns emphasize the necessity of having a correct understanding of 
the impact of asymmetries on volatility. By testing the variety of models that were highlighted 
earlier and examining whether they offer logical solutions to the data, many concerns are answered. 

3. Estimations and Density Assumptions  
To estimate the parameters of these models, a maximum likelihood (ML) approach is used. “The 
innovations zt are assumed to be following a conditional distribution, and hence a log-likelihood 
function is considered for maximization using standard numerical method” (Hagerud 1997; p.4). 
Again, it may be expected that excess kurtosis and skewness displayed by the residuals of GARCH 
models are reduced when a more appropriate distribution is used. The next few paragraphs will run 
through the different densities used in this paper and provide their log-likelihood functions. 

The normal distribution is the most widely used when estimating GARCH models. Given both the 
mean equation in (1), the variance equation for any of the models presented in (3), (4), (9) and (10), 
and the stochastic process of the innovations given by (2), the log-likelihood function for the 
standard normal distribution is given by: 
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where T is the number of observations. For a Student-t distribution, the log-likelihood is: 
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Furthermore, the GED log-likelihood function of a normalized random error is: 
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The previous two densities account for fat-tails, but do not take into account asymmetries. Lambert and 
Laurent (2001) applied and extended the skewed Student-t density proposed by Fernandez and Steel (1998) 
to a GARCH framework: 
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See Lambert and Laurent (2001) for further details. 

4. Specification Tests  
“To estimate the unknown parameters of the models, iterative numerical methods (with the help of 
software) are required. These procedures are usually time-consuming (especially if the code must 
written), and if the model in question explains the data badly, the estimation might not converge” 
(Hagerud 1997; p.1). For this reason specification tests play a crucial role in investigating whether 
or not certain models fit the time series data at hand. Following the recommendations of 
Wooldridge (1991) and Hagerud (1997), a “bottom-up” strategy will be used when performing 
specification tests. In other words, we will start out by specifying the conditional mean. Once the 
conditional mean is formulated and estimated satisfactorily, tests for the conditional variance 
specification are initiated. 

Following Hagerud, “when attempting to specify the conditional mean, only possible 
autocorrelations in the returns are tested for”11(p.5). To test for autocorrelation, the ACF and PACF 
are employed, in addition to a test developed by Richardson and Smith (1994),12 “which is a robust 
version of the standard Box-Pierce (1970) procedure” (Hagerud 1997; p.5). If ∧

iρ , is the estimated 
autocorrelation between the returns at time t and t-i, then the (RS) is formulated as: 

∑
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where ic is an adjustment factor for heteroskedasticity and is calculated as: 
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where 2
tr is the demeaned return at time t. Under the null of no autocorrelation, this test is 

distributed 2χ  with k degrees of freedom. If the null cannot be rejected, it can be deduced that the 
specification of the conditional mean in (1) is equal to a constant plus a residual. On the other hand, 
if the null is rejected, an AR(1) model is estimated on the series. Furthermore, to ensure that this 
AR(1) specification has captured all the autocorrelation, equation (15) is applied on the estimated 
residuals of the AR(1) process. The residual testing using (15) is compared to a 2χ distribution with 
k-1 degrees of freedom. If the null cannot be rejected, it is concluded that returns are generated by 
an AR(1) model. If the null is rejected, the testing continues with higher- order AR models until the 
null cannot be rejected. (Hagerud 1997; p.5) 

Once the conditional mean equation has been specified, tests for the presence of a time varying 
variance are implemented. The most widely cited and used test for this purpose is the LM test of no 

                                                            
11 Other studies have tested for “day-of-the-week effects” and the possibility of the conditional variance as the 
explanatory variable of the returns. These specifications are not considered in this study.  
12 This test is cited in Hagerud (1997). 
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ARCH of Engle (1982)13. The test procedure is to run an OLS regression on (1) after having 
calculated the “correct” lags from the Richardson and Smith test in (15) and save the residuals. 
Then, regress the squared residuals on a constant and p lags and test T*R2 on a 2χ distribution with 
p degrees of freedom.  

If the null of no ARCH(q) cannot be rejected, the investigation continues with tests for asymmetric 
GARCH. The fact that “negative return shocks cause more volatility than positive return shocks of 
the same magnitude tells us that the standard GARCH model will underpredict the amount of 
volatility following bad news…and overpredict it following good news” (Engle and Ng 
1993;p.1757). These observations suggest testing for whether it is possible to predict the squared 
normalized residuals by variables observed in the past, which are not included in the volatility 
model being used. If these variables can predict the squared normalized residuals, then the variance 
model is misspecified. The sign bias test proposed by Engle and Ng (1993) considers a dummy 

variable 
−
−itS , which takes the value of one when it−ε  is negative and zero otherwise. This test 

examines the impact of positive and negative return shocks on volatility not predicted by the model 
under consideration. The general derived form of the test using a slightly different notation than 
Engle and Ng (1993) is: 

taattt uzz ++= ϑϑν 00
2          (17) 

where, tz 0  is a k x 1 vector of explanatory variables of the model hypothesized under the null,14 

0ϑ is the k x 1 vector of parameters under the null. aϑ  is a m x 1 vector of additional parameters 

corresponding to atz , which is a m x 1 vector of missing explanatory variables. ttt 0/σεν ≡ , where, 

t0σ  is the conditional standard deviation vector estimated using the hypothesized model under the 
null and finally, tu  is the residual. Theoretically, the right hand side of equation (17) should have 

no explanatory power at all. To actually perform the sign bias test atz  is replaced by −
−itS  and an 

actual regression takes the following form: 

tttt ezbSa +′++= −
− 01

2 βν          (18) 

where, a and b are constant parameters, β is a constant parameter vector, and te  is the residual. The 
sign bias test is defined as the t-statistic for the coefficient b in regression equation (18).  

Furthermore, according to Engle and Ng (1993), “the sign bias test can also be used on raw data to 
explore the nature of the time-varying volatility in a time series, without first imposing a volatility 
model” (p.1760).  

In this case, tε , and tν  would be defined as: 

µε −= tt R            (19a) 

s
t

t
ε

ν =            (19b) 

                                                            
13 Engle’s (1982) LM test of no ARCH is standard in any statistical or econometric software package. 
14 Usually a symmetric GARCH(1,1). 
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where, µ  and s are the unconditional mean and standard deviation of the time series tR , 
respectively. If b from equation (18) is statistically significant, then it is justifiable to use models 
(3), (4), (9) and (10). 

5. Data 
The behavior of the ESE stock returns will be analyzed using two major daily aggregate indices.15 
These indices have different composition and are thus worthwhile to examine in order to assess the 
sensitivity of the empirical results. The indices are: 

a. The Hermes Financial Index (HFI), begun on July 1, 1992. The HFI is the benchmark of 
the Egyptian market and is used to monitor the overall market overall performance. HFI tracks 
the movement of the most active Egyptian stocks traded on the ESE. Although HFI is broad-
based, it limits its constituents only to companies that have genuine liquidity in the market, as 
opposed to those companies which make only a few sporadic pre-arranged trades. Criteria for 
inclusion in the index are average daily value traded, average daily number of transactions, total 
number of days traded during a calendar quarter and market capitalization. The HFI is 
capitalization weighted for registered stocks that are openly traded,16 giving higher weights to 
larger companies, while eliminating cross-ownership among its constituents. The index is 
calculated on a total return basis, taking into consideration the reinvestment of dividends and is 
rebalanced quarterly. The index currently contains 34 companies. 
b. The Egyptian Financial Group Index (EFGI), started on January 3, 1993. It is also 
capitalization-weighted for registered stocks. EFGI tracks the movement of large capitalization 
Egyptian companies17 that are most actively traded on the ESE. It is a subset of the Hermes 
Financial Index (HFI), which in turn limits its constituents to companies that have genuine 
liquidity in the market, as opposed to those companies that trade only a few sporadic pre-
arranged trades. Criteria for inclusion in the EFGI are large market capitalization as well as 
average daily value traded, average daily number of transactions and total number of days 
traded during a calendar quarter. The index is also calculated on a total return basis, taking into 
consideration the reinvestment of dividends. Rebalancing, again, is done on a quarterly basis. 
EFGI is deemed the investable index and acts as a good indicatior of foreign investment 
activity. It currently contains 10 companies. 
Three other researched, well-cited, and commonly used indices18: The Capital Market 
Authority Index (CMAI); The Prime Index for Initial Public Offerings (PIPO); and the IFC 
Global Egypt Index are not used. The first, CMAI, is not used because more than 50 percent of 
the trading value was concentrated in less than 5 percent of its total listed shares. The second 
(PIPO) and third (IFC) were not used in this paper as this would entail a sizable loss in sample 
information. The two indices were started in 1996 and 1997, respectively.  

The sample consists of 2237 daily observations on stock returns of the HFI and the EFGI indices. It 
covers a nine-year period, beginning on January 3, 1993 and ending on December 31, 2001.19 For 
illustrative purposes, Figure 1 compares the two used indices’ daily closing values taken across the 
sample period. Furthermore, Figures 2 and 3 look at the behavior of the EFGI and HFI returns, 
respectively, over the sample period. 
                                                            
15 The two indices (EFGI) and (HFI) have been chosen because they represent largest and most actively traded stocks. 
They also entail the largest sample information.  
16 No Over the Counter (OTC) traded stocks  
17 Companies with a market capitalization that exceeds L.E. 500 million. 
18 CMAI and PIPO are researched in Mecagni and Shawky (1999). 
19 The data for this study is provided by the Egyptian Financial – Hermes (EFG-Hermes) Group. I would like to thank 
Mr. Karim Awad and Ms. Heba El-Zoaiby, EFG-HERMES, for their phenomenal support in providing data and adding 
valuable comments.  
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Because the main objective of this paper is to examine whether the introduction of the circuit 
breaker to the ESE affected the data-generation process, it is therefore important that such a 
significant change be controlled for over time. Here, I explore the effects of a policy change by 
dividing the sample into two parts: before and after the regulation. To test the soundness of my 
reasoning,20 a restricted F-Chow test21 was formulated. The idea of the breakpoint Chow test is to 
fit the equation separately for each sub-sample and to examine whether there are significant 
differences in the estimated equations. A significant difference indicates a structural change in the 
relationship.  

Since the breakpoint test statistics decisively reject the null hypothesis of no structural change in 
daily returns, the sample was partitioned into two sub-samples. After dividing the sample, we look 
at the descriptive statistics of both indices (Tables 1 and 2) over the two sub-sample periods and 
highlight the following: 

 Mean returns for the EFG Index are slightly larger than those for the HFI, whereas the Median 
returns for HFI are larger than EFGI’s for the first sub-sample. As for the second sub-sample, 
the exact opposite occurs; 

 Variability, which can be deduced from looking at the samples’ non-conditional variances or 
standard deviations, is larger for HFI and EFGI in the first and second sub-samples respectively. 
Variances for both indices increased in the second sub-sample over the first one; 

 The returns for both indices are skewed to the right; or in other words, they display positive 
skewness. The null hypothesis for skewness coefficients that conform with a normal 
distribution’s value of zero has been rejected at the 5 percent significance level;22 

 The returns for both indices also display excess kurtosis. The null hypothesis for kurtosis 
coefficients that conform to the normal value of three is rejected for both indices;23  

 After looking at the third and fourth moments, it is not surprising that both indices were found 
to be leptokurtic (fat-tailed). The high values Jarque-Bera test for normality decisively rejects 
the hypothesis of a normal distribution; 

 Although the Augmented Dicky-Fuller (ADF) unit root tests strongly reject the hypothesis of 
non-stationarity,24 both returns display a degree of time dependence. This can be seen through 
the Autocorrelation Function (ACF) for both indices. Correlograms (taken over 36 lags) were 
estimated for the returns on both indices. For the first sub-sample, the correlograms show a 
pattern of smooth decay typical of stationarity, and a second-order autoregressive process 

                                                            
20 Whether its valid to divide the sample in two sub-samples; with one starting from 1/3/93 and ending 1/31/97 just 
before imposing the price limit regulation in February 1997, and the other starting after the regulation and ending on 
12/31/01. 
21 To carry out the test, I partitioned the data into two sub-samples. Each sub-sample contained more observations than 
the number of coefficients in the equation so that the equation can be estimated. The Chow breakpoint test compares 
the sum of squared residuals obtained by fitting a single equation to the entire sample with the sum of squared residuals 
obtained when separate equations are fit to each sub-sample of the data. E-Views, reports the F-statistic for the Chow 
breakpoint test. The F-statistic is based on the comparison of the restricted and unrestricted sum of squared residuals 
and in the simplest case involving a single breakpoint. 
22 The t-stat was calculated in the following matter: (S-0)/se(S), where (S) stands for skewness coefficient and (se(S)) 
stands for the standard error. Standard error =( 6/number of observations)^1/2. 
23 The t-stat was calculated in the following matter: (K-3)/se(K), where (K) stands for kurtosis coefficient and (se(K)) 
stands for the standard error. Standard error =( 24/number of observations)^1/2. 
24 While it may appear that the test can be carried out by performing a t-test, the t-statistic under the null hypothesis of 
a unit root does not have the conventional t-distribution. Dickey and Fuller (1979) showed that the distribution under 
the null hypothesis is nonstandard, and simulated the critical values for selected sample sizes. More recently, 
MacKinnon (1991) has implemented a much larger set of simulations than those tabulated by Dickey and Fuller. In 
addition, MacKinnon estimates the response surface using the simulation results, permitting the calculation of Dickey-
Fuller critical values for any sample size and for any number of right-hand variables. These MacKinnon critical values 
for unit root tests were the one used in this paper. 
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AR(2).25 The second sub-sample has a sharper decay after the first lag indicating the presence 
of an AR(1); 

 Finally, Figures 2 and 3 show us that there is evidence of volatility clustering, meaning that 
large or small asset price changes tend to be followed by other large or small price changes of 
either sign (positive or negative). This implies that stock return volatility changes over time. 
Furthermore, the figures indicate a sharp increase in volatility starting from the year 1997. 

The statistical results for both indices appear to have very similar characteristics. They both display 
positive skewness, were found to be deviating from normal, and display a degree of serial 
correlation. These stylized results are very similar to a number of previous empirical works. Fama 
(1976) showed that the distribution of both daily and monthly returns for the Dow Jones depart 
from normality, and are skewed, leptokurtic, and volatility clustered. Furthermore, Kim and Kon 
(1994) found the same for the S&P 500. Finally, Mecagni and Shawki (1999) show similar results 
in the ESE. They look at the whole sample without partitions.  

6. Results 
6.1. Specification Tests Results 
As mentioned earlier, the search for finding the correct specifications will follow a “bottoms-up” 
strategy, which means that the conditional first moment will be examined first. Tables 3 and 3’ 
report the results from the Richardson and Smith (1994) test (15), calculated on10autocorrelations. 
The results indicate that both indices show signs of autocorrelation on a five percent significance 
level across both sub-samples. In fact, the first sub-sample indicates the presence of an AR(2), 
whereas in the second sub-sample only an AR(1) can be detected. Since no autocorrelation can be 
found in the first sub-sample’s residual series of the AR(2) specification, we can conclude that, for 
both indices, the suitable mean equation is (1) with p = 2. Moreover, in the second sub-sample the 
autocorrelation disappears after testing for the AR(1) residuals, the mean specification is (1), yet 
with p = 1, being appropriate.   

LeBaron (1992) argues that the magnitude of the serial correlation is sometimes related to 
volatility, consistent with non-synchronous trading being more severe when volatility and volume 
are both low. This argument raises a very critical question concerning the data at hand. Is the high 
serial correlation in the first sub-sample resulting from an “index effect”26 or from market 
inefficiencies? To answer this, individual securities were examined and similar results were found 
that indicated high market inefficiencies during the period. In fact, some securities had even higher 
order autocorrelations.  

Tables 4 and 4’ report the results from the Engle’s (1982) test of no ARCH. The test is calculated 
with q equaling two, five and ten. The indices show signs of heteroskedasticity in both sub-samples, 
indicating the legitimacy of using ARCH/GARCH type models. Tables 4 and 4’ also report excess 
kurtosis for the series of estimated residuals. The fact that excess kurtosis was found to be high 
indicates that it is unlikely that a GARCH-type model with normal errors can generate the 
underlying data. 

Finally, Engle and Ng’s (1993) sign bias test on the raw data was conducted. The test was 
performed by estimating (18) using (19a) and (19b) as proxies for tε  and tν . For the first sub-
sample the results show no signs of asymmetry in the data because of the insignificance of b in the 
two regressions (for 2 indices). On the other hand, for the second sub-sample b is significant for 
both indices at the five percent level, which in turn justifies estimating asymmetric GARCH type 
models.  

                                                            
25 See Enders (1994).  
26 Resulting from the non-trades of some of the component stocks. 
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In sum, if we look at the first sub-sample we can hypothesize from the specification tests that the 
simple symmetric GARCH should outperform all other asymmetric GARCH models. Furthermore, 
given the fact that the residual series exhibited some excess kurtosis, it can also be predicted that a 
fatter-tailed distribution such as the student-t, or possibly a GED, should generate better results than 
a normal distribution or a more complex asymmetric student-t. As for the second sub-sample, the 
sign bias test on the raw series predicts that asymmetric GARCH models should do a better job in 
explaining the ESE’s dynamics. In addition, both the presence of excess kurtosis and asymmetry 
tell us that a skewed student-t distribution should excel. The validity of the hypotheses given earlier 
will be tested once the models are estimated and out-of- sample forecasts are conducted. 

6.2. Estimation Results 
To estimate the parameters of the earlier mentioned models, we use the GARCH ToolBox in 
MATLAB, as well as, the G@RCH 2.3 Ox programmed package of Laurent and Peters (2002).27 
Models (3), (4), (9) and (10) will only be studied in their most simple structure, when both of the 
lags, p and q, are equal to one. Low-order lag lengths were found to be sufficient to model the 
variance dynamics over very long sample periods.28  

As was claimed in Section 3, a maximum likelihood approach is used to estimate the four models 
with the four underlying error distributions. For the first sub-sample, convergence was not reached 
for any of the models using the GED distribution. Furthermore, convergence was also not reached 
for the EGARCH and APARCH models under any of the four distributions. These cases are all 
indicated as failures in the results tables. Failures often occur because the series of the conditional 
variance is given a negative value, or because stationarity conditions on the estimated parameters 
could not be met29. Tables 5 and 6 present the estimation results for the first sub-sample’s 
parameters of the GARCH and GJR models, respectively. GJR’s use appears to be unjustified for 
sub-sample 1, since the symmetric coefficients were not significant for both indices. 

One of the objectives of this study is to jointly investigate which of the GARCH type models and 
underlying distributions “best” models the conditional variance for the ESE. Three selection criteria 
for finding the best model and distribution are used: the value of the likelihood function, which we 
are maximizing; also the BIC30 information criteria of Schwartz; and the AIC31 information criteria 
of Akaiki, which are both minimized.  

Tables 7 to 11 report the log likelihood value, the information criteria, and other useful in-sample 
statistics.32 Not surprisingly, the models with the most parameters always maximize the likelihood 
function, in this case GJR. However, when the number of parameters is given consideration, as in 
the AIC and BIC, the simple traditional GARCH always outperforms the more parameterized GJR 
across both indices. This result strengthens the hypothesis drawn earlier from the specification tests 
that the use of asymmetric models is, for the first sub-sample, unnecessary.  

                                                            
27 I would like to thank Prof. Blake LeBaron and Math Works for their support in sharing the upgrades of the 
MATLAB GARCH ToolBox; Prof. Sebastian Laurent for his immense help and valuable comments with operating the 
G@RCH 2.3 package. Finally, I would like to thank Dean Peter Petri and GSIEF for their financial support.  
28 French, Schwert, and Stambaugh (1987) analyze daily S&P stock index data for 1928-1984 for a total of 15,369 
observations and require only four parameters in the conditional variance equation (including the constant). 
29 See Hagerud (1997). 

30 n
k

n
LogLSchwartz )log(22 +−=  

31 n
k

n
LogLAkaiki +−= 2  

where, LogL = log likelihood value, n = number of observations and k is the number of estimated parameters. 
32 Reported are: the Box-Pierce statistics at lag (l) for both the standardized and squared standardized residuals and the 
adjusted Pearson goodness-of-fit test that compares the empirical distribution of innovations with the theoretical one. 
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Regarding the densities, the two student-t distributions clearly outperform the Gaussian. Again, it is 
not surprising to see the log-likelihood function increase strongly when using the skewed student-t 
density against the two other symmetric densities. The presence of asymmetry in the density is not 
needed because in all cases for sub-sample 1 (when using GARCH and GJR), the student-t 
outperforms the skewed-t for both indices.  

Both models that converged for the first sub-sample seem to do an adequate job of describing the 
dynamics of the first and second moments. The Box-Pierce statistics are under the null of no 
autocorrelation, as the residuals and the squared residuals are for the most part non-significant at 
the 10 percent level. 

As for the second sub-sample, convergence could not be reached with EGARCH, whatever the 
distribution used. Tables 12 to 14 present the estimation results for the second sub-sample’s 
parameters of the GARCH, GJR and APARCH models respectively. Both uses of GJR and 
APARCH appear to be justified for sub-sample 2, since the symmetric coefficients are all 
significant at the five percent level for both indices. 

Looking at the log likelihood values, AIC and BIC in Tables 15-18, we can highlight the fact that 
GJR or APACH models almost always better estimate the series for both indices than the traditional 
GARCH. However, this conclusion should be cautiously drawn because of the very small 
differences in values for these tests. Out-of-sample forecasting should provide better results. 

In looking at densities for the second sub-sample, no one distribution has proved to be the best. Yet 
again the two Student-t distributions clearly outperform the Guassian and the GED distributions for 
both indices. Unlike the first sub-sample, where the use of asymmetric densities was not needed, in 
the second sub-sample the usefulness of asymmetry is not as clear-cut. If the Skewed Student-t 
density gives better results than the symmetric Student-t when modeling the EFGI, the opposite is 
observed for the HFI. A possible explanation for this deviation is that if skewness is significant in 
both series, its magnitude might be lower for the HFI.  

GARCH, GJR and APARCH for the second sub-sample also do a decent job in describing the 
dynamics of the first and second moments. The Box-Pierce statistics, under the null of no 
autocorrelation, for the residuals and the squared residuals are non-significant at the 10 percent 
level. 

6.3. Forecasting  
Laurent and Peters (2002) find estimating an econometric model usually useful in helping to 
demonstrate the generation process of a time series under study, or finding solutions to economic 
problems. Yet, they claim: “the main purpose of building a model and estimating it with financial 
data has always been to produce future forecasts” (p.39). According to Franses and Van Dijk 
(1998), it is reasonably difficult to select the “best” GARCH model on the basis of specification 
tests only. For this reason technicians started using out-of-sample forecasting as an alternative 
approach to selecting the most adequate model. Obviously, “if a volatility model is to be of any use 
to practitioners in financial markets, it should be capable of generating accurate predictions for the 
future” (Franses and Van Dijk 1998; p.195).  

In this paper we attempt to forecast the conditional variance and compare the performance of the 
previously discussed models. In the simple GARCH (p,q) case the optimal s-step-ahead forecast of 
the conditional variance 2

tsth +  is given by: 
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where 22
tittit ++ = σε for i > 0 and 2

tit+ε = 2
it+ε  and 22

ittit ++ = σσ  for i< 0. A closed form solution for 
2

tsth + can be obtained by recursive substitution. 

With regards to the asymmetric GARCH type models (EGARCH, GJR, APARCH), the 
computation of the out-of-sample forecasts might be slightly more complex. The assumption made 
on the innovation process may have an effect on the forecast. 

For example, the s-step forecast of the conditional variance of the GJR(p,q) is: 
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If iω̂ is not zero, one has to compute −
+− tsitS . By definition, −

+
−
+ = ittit SS  for 0≤i . However, when 

i>1 −
+ titS depends on the choice of the distribution of tz . When the density is symmetric, the 

probability that it+ε  will be negative is 5.0=−
+ titS . On the other hand if the underlying error 

distribution is not symmetric the probability that it+ε  will be negative will depend on the ratio of 
probability masses above and below the mode.33 

Finally, the h-step-ahead forecast of the APARCH and the EGARCH models are obtained in a 
similar manner.34   

Whereas forecasting the future conditional volatility from GARCH models is fairly straightforward, 
evaluating the forecasts is a more challenging task. In this paper, the GARCH models have been 
estimated using a sample of n-100, where n is the sample size. The one hundred excluded 
observations from the estimation process in each of the two sub-samples are held back for 
evaluation of the s-step-ahead forecasts. 

To evaluate the performance of the different models used in forecasting the conditional variance, 
four widely used statistical criteria are measured:  

 Mean Squared Prediction Error (MSPE); 
 Adjusted Mean Absolute Percentage Error (AMAPE); 
 Theil Inequality Coefficient (TIC); 
 Mincer and Zarnowitz R Squared (RS); 

The MSPE is: 
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where, s is the number of steps ahead, n is the sample size, 2h  is the forecasted variance and 2σ is 
the ex-post “actual” variance. 

The AMAPE is given by: 
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33 See Laurent and Peters (2002). 
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The Theil inequality coefficient is a scaled measure that always lies between zero and one, where 
zero indicates a perfect fit. 
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Finally, one of the most popular measures to check the forecasting performance of GARCH type 
models is the Mincer-Zarnowitz regression: 

ttt uh ++= 22 βασ           (25) 

If the conditional variance is correctly specified (and the parameters are known) and 22 )( tthE σ= , it 
follows that α =0 and β =1. The 2R  is measured as a degree of predictability of the GARCH-type 
model used. 

However, a major problem always arises when attempting to evaluate the forecasts of a conditional 
variance, as 2

tσ is never observed. To make these forecast evaluation criteria operational, 2
tσ is 

replaced by the squared daily returns as the “actual” volatility. 

In their econometric text Franses and Van Dijk (1998) observe that, “most of the time, GARCH 
models provide seemingly poor volatility forecasts, and they explain only very little of the 
variability of asset returns” (p.195). In other words, the first three evaluation criteria are usually 
very high, whereas the 2R  of the fourth was never found to exceed five percent. Anderson and 
Bollerslev (1997) attributed the problem to the improperness of the aforementioned proxy measure. 
They propose looking at squared returns of higher frequency data with intra-day intervals as low as 
every five minutes. Because no such data is available for the ESE, the “realized” volatility is 
assessed through another measure. Based on the recommendations of Prof. Blake LeBaron, a high-
low proxy measure is constructed: 
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where, thigh  is the highest price at time t and tlow  is the lowest price.  

Unfortunately, high-low data is only available for the studied indices from the year 1997. This 
means that the forecasts for the first sub-sample will have to be evaluated using the traditional 
method of squared daily returns. The second sub-sample will use both methods: squared daily 
returns and equation (26). 

The forecasting ability for both sub-samples are reported by ranking both the models, as well as the 
different densities on a scale from 1……n (depending on convergence). Table 22 compares the 
models based on the different specifications. By contrast, Table 23 provides a comparison between 
the different distributions for both indices in the first sub-sample. The second sub-sample 
specification and density comparisons evaluated, based on squared daily returns, are shown in 
Tables 24 and 25, respectively, whereas comparisons based on the high-low volatility index are 
found in Tables 26 and 27. 

When looking at the results from the first sub-sample, the following can be deduced: 
                                                                                                                                                                                                     
34 See Franses and Van Dijk (1998) for derivation and closed form solutions of s-step-ahead forecasts of a variety of 
asymmetric GARCH models. 
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 The comparison between the models found in Table 22 strongly supports the use of a simple, 
traditional GARCH model over the more parameterized asymmetric GJR for HFI. This result 
complements the in-sample evaluation that was conducted on the estimations. For EFGI the 
results are mixed. Indeed, when the normal distribution is used, GARCH outperforms GJR, 
while the exact opposite occurs when the density is a student-t;  

 The comparison between densities found in Table 23 very strongly supports the use of the 
normal distribution for both indices. This contradicts what was earlier observed when the 
estimated models were evaluated. Finally, the fact that the skewed student-t distribution 
performs the most poorly affirms that an asymmetric density should not be considered; 

 To understand how close the forecasts are to the squared daily returns in the first sub-sample, 
one can look at the R squared of equation (25). In particular, the RS is higher when using a 
simple GARCH. For example, when using a normal distribution, its value is 0.0434 with 
GARCH versus 0.0407 with GJR for HFI and 0.0646 versus 0.00479 for EFGI35. 

For the second sub-sample, we can conclude the following: 

 The comparison between models found in Table 24 strongly supports the use of the APARCH 
model over the more parsimonious asymmetric GJR and the simple GARCH for the HFI. For 
EFGI, the results are again mixed. When the normal GED and skewed student-t distributions 
are used, APARCH outperforms all other models; when student-t density is employed GARCH, 
becomes the favorite;  

 The comparison between densities found in Table 25 once again strongly supports the use of the 
normal distribution for both indices. This contradicts what was earlier observed when the 
estimated models were evaluated;  

 The R squared for the regressions that were run on equation (25) for the second sub-sample are 
still below five percent. This result is similar to those found in other studies. For example Blair, 
Poon and Taylor (2000) obtained a RS of 0.423 when they forecasted the S&P 100 index using 
a GJR model and Jorion (1996) reported a RS of 0.024 when he studied daily DM-USD returns. 

Finally, when the second sub-sample was evaluated with the high-low proxy in equation (26), 
disappointing and widely different results were found. These results include:  

 The comparison between the models found in Table 26 did not provide us with very clear-cut 
results. When the normal and skewed student-t distributions are used, GJR outperforms all other 
models, and then when student-t and GED densities are employed APARCH becomes the 
favorite. One exception to this order, again, occurs for the EFGI series, that is, when GED is 
utilized GARCH performs the best. These results, as conflicted as they are, do in fact support 
both the specification tests and in-sample results, earlier reported in this paper; 

 The comparison between densities, found in Table 27, disappointingly give very conflicting 
results. The normal distribution outperforms the rest when GARCH is used, whereas GED 
becomes the best when GJR is utilized. Finally, when APARCH is used, both the normal and 
GED perform equally well;  

 Even though the high-low proxy evaluation results did not add much information to what was 
previously observed, we think it has added to the literature in another area. The RS for the 
regressions that were run on equation (25) have increased significantly; it ranges from 0.0856 - 
0.1567. This finding denotes an improvement compared to previous studies using squared daily 
returns as the “actual” volatility.  

7. Conclusion 
This paper has presented results from an empirical investigation of two equity return series from the 
Egyptian Stock Exchange. The study compared varying GARCH-type models with different 

                                                            
35 Only rankings for the RS for all regressions are reported here due to space considerations.  
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underlying distributional assumptions for the innovations in an effort to understand the data 
generation process of the series. The comparison focused on two different aspects, in-sample 
estimates and out-of-sample forecasts, in order to determine the “best” fitted model. Moreover, the 
time series was divided into two sub-samples to examine changes in performance of the models as a 
result of the circuit breaker regulation that affected the trading environment. The series division and 
its analysis separately are perfectly timed given the ongoing debate on whether to retain or remove 
the symmetric price limit bands.  

The estimation results conform to a series of ex-ante specification tests. For the first sub-sample, 
the evaluation criteria for the in-sample estimates show that a simple GARCH model with student-t 
innovations outperforms any of the more sophisticated asymmetric models. Regarding the second 
sub-sample, it was clear that APARCH and GJR gave better estimates over the traditional GARCH. 
The favorite density was yet again the fat-tailed student-t distribution.  

Ex-post forecasting evaluations, when using squared returns, do not enhance the estimation results 
and leave us with contradictory results. For the first sub-sample, the HFI series demonstrates that 
the simple GARCH performs the best, whereas the EFGI series gives us conflicting conclusions. 
Indeed, when the normal distribution is used, GARCH outperforms GJR, while the exact opposite 
occurs when the density is a student-t. Furthermore, the normal distribution seems to always 
outperform the student-t. Similar conclusions were drawn from the forecasts of the second sub-
sample. The APARCH model was favored over the more parsimonious asymmetric GJR and the 
simple GARCH for the HFI. As for EFGI the results were again mixed. When the normal GED and 
skewed student-t distributions were used, APARCH outperformed all other models, and then when 
student-t density was employed GARCH became the favorite. Even though using the high-low 
proxy for the “actual” volatility did not strengthen the in-sample density comparison results, it was 
consistent with both the in-sample and return squared forecasts in suggesting that asymmetry in 
GARCH models is necessary for the series studied. Furthermore, it showed that studying high-low 
ranges could be a very promising area of research, which can improve forecasting results. 

It was apparent that these differences were depicted when the two sub-samples were examined, 
indicating significant changes in the time varying volatility process. A series of essential questions 
arise and should be addressed here: For one, if the ESE were to abolish price limits, would the 
volatility generation process be similar to the first sub-sample? Certainly not. The results from the 
first sub-sample should be regarded with extreme caution as a result of the trading frictions and 
market inefficiencies associated with the market at the time36. Also, if the limits were to stay, would 
the models tested here work for individual securities in the same way that they work for the 
indices? When price limits are imposed, indices are usually not affected by them unless all the 
constituting stocks move in tandem and hit the limit. Thus, to fully capture the dynamics of 
individuals stocks (traded in a limit governed market), limit censored GARCH models should be 
used37.  

Several directions and extensions could emerge from this study. First, previously mentioned studies 
could be re-examined using our high-low “actual” volatility proxy to see its validity across the 
board38. Second, based on the recommendations of Bollerslev, Chou, and Kroner (1992), “ a 
comparison of the efficiency of ML, QML, and GMM estimates using different instrument sets 
would be interesting…” (p. 9). Finally, the ARCH (q) and GARCH(p) parameters of almost all the 
models that were estimated when added were very close to unity. This indicates that introducing 
models with persistent shocks incorporated into them (like IGARCH, FIGARCH and FIAGARCH) 
might provide superior results.  

                                                            
36 For more information on the subject see Mecagni and Shawki (1999). 
37 This part of the literature is growing and is mostly studies U.S. futures markets. (see Chapter 5 in this thesis) 
38 Other methods could not be conducted on the ESE due to data limitations.  
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Figure 1: EFGI and HFI Daily Closing Prices January 3, 1993 to March 8 2001 

 
 
 
Figure 2: EFGI Returns, January 3, 1993 to March 8 2001 

 
 
 
Figure 3: HFI Returns, January 3, 1993 to March 8 2001 
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Table 1: Descriptive Statistics for Sub-Sample 1 
Descriptive Statistics HFI EFGI 
Mean (%) 0.1717 0.1760 
Standard Error 0.0292 0.0254 
Median (%) 0.0527 0.0707 
Standard Deviation (%) 0.9321 0.8107 
Variance 0.0087 0.0066 
Kurtosis 9.2774 9.2799 
Skewness 0.4690 0.7587 
Jarque-Berra Normality Test 1706.634 1768.753 
Augmented Dickey-Fuller Unit Root Test -10.6552 -10.368 
Range  0.1021 0.0941 
Minimum -5.1527 -4.9213 
Maximum 5.0565 4.4893 
Sample Size 1017 1017 
Notes: This table lists the summary statistics for the two ESE indices studied in this paper, HFI and EFGI. 
The period investigated is from January 3, 1993 to January 31, 1997. 
 
 
 
 
 
 
 
 
 
Table 2: Descriptive Statistics for Sub-Sample 2 
Descriptive Statistics HFI EFGI 
Mean (%) -0.0701 -0.0735 
Standard Error 0.0421 0.0442 
Median (%) -0.0937 -0.0960 
Standard Deviation (%) 1.3807 1.4493 
Variance 0.0191 0.0210 
Kurtosis 3.9512 3.9083 
Skewness 0.2019 0.1442 
Jarque-Berra Normality Test 422.352 401.385 
Augmented Dickey-Fuller Unit Root Test -12.6053 -12.8503 
Range  0.0902 0.0918 
Minimum -4.6796 -4.6910 
Maximum 4.3417 4.4971 
Sample Size 1219 1219 
Notes: This table lists the summary statistics for the two ESE indices studied in this paper, HFI and EFGI. 
The period investigated is from February 2, 1997 to December 31, 2001. 
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Table 3: Results from Tests of Autocorrelation for Sub-Sample 1 

Index RS(10) on rt (p-value) RS(10) on εt from AR(1) (p-value) RS(10) on εt from AR(2) (p-value)
HFI 0.005 0.039 0.172 
EFGI 0.003 0.018 0.092 
Notes: This table reports results from tests performed to specify the conditional mean equation. Column two 
gives p-values for the Richardson and Smith’s (1994) test for autocorrelation (15), calculated on the 
demeaned returns. Column three reports p-values for the same statistic, but calculated on estimated residuals 
from an AR(1) model. Finally, column four reports p-values on estimated residuals from an AR(2) model. 
All statistics are calculated on10autocorrelations. The period investigated is from January 3, 1993 to January 
31, 1997. 
 
 
Table 3’: Results from Tests of Autocorrelation for Sub-Sample 2 
Index RS(10) on rt (p-value) RS(10) on εt from AR(1) (p-value) RS(10) on εt from AR(2) (p-value)
HFI 0.041 0.365 ----- 
EFGI 0.033 0.296 ----- 
Notes: This table reports results from tests performed to specify the conditional mean equation. Column two 
gives p-values for the Richardson and Smith’s (1994) test for autocorrelation (15), calculated on the 
demeaned returns. Column three reports p-values for the same statistic, but calculated on estimated residuals 
from an AR(1) model. Finally, column four reports p-values on estimated residuals from an AR(2) model. 
All statistics are calculated on10autocorrelations. The period investigated is from February 2, 1997 to 
December 31, 2001. 
 
 
Table 4: Results from Tests of ARCH for Sub-Sample 1 
Index No ARCH (2) No ARCH (5) No ARCH (10) κ(ε) s(ε) 

HFI 46.866 
(0.000) 

23.634 
(0.000) 

12.890 
(0.000) 

10.009 0.187 

EFGI 59.026 
(0.000) 

27.540 
(0.000) 

14.546 
(0.000) 

9.3512 0.171 

Notes: This table reports results from Engle’s (1982) test of no ARCH, calculated on different lags. Column 
two reports test on two squared residuals. Column three gives test results on five squared residuals, whereas 
column four looks at10squared residuals. Column five reports the coefficient of excess kurtosis calculated on 
estimated residuals. Finally, column six reports skewness of the estimated residuals. P-values are given in 
parenthesis. The period investigated is from January 3, 1993 to January 31, 1997. 
 
 
Table 4’: Results from Tests of ARCH for Sub-Sample 2 
Index No ARCH (2) No ARCH (5) No ARCH (10) κ(ε) s(ε) 

HFI 135.770 
(0.000) 

70.150 
(0.000) 

37.609 
(0.000) 

4.919 0.253 

EFGI 158.290 
(0.000) 

75.545 
(0.000) 

40.125 
(0.000) 

4.008 0.203 

Notes: This table reports results from Engle’s (1982) test of no ARCH, calculated on different lags. Column 
two reports test on two squared residuals. Column three gives test results on five squared residuals, whereas 
column four looks at10squared residuals. Column five reports the coefficient of excess kurtosis calculated on 
estimated residuals. Finally, column six reports skewness of the estimated residuals. P-values are given in 
parenthesis. The period investigated is from February 2, 1997 to December 31, 2001.  
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Table 5: AR(2)-GARCH (1,1) Estimation Results for Sub-Sample  
  HFI    EFGI   
 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ  0.0281 
(0.0376) 

0.0248 
(0.0267) Fail 0.0450 

(0.0358) 
0.0173 

(0.0269) 
0.0160 

(0.0203) Fail 0.0137 
(0.0266) 

1ϕ  0.2819 
(0.0373) 

0.2834 
(0.0359) Fail 0.2811 

(0.0361) 
0.2296 

(0.0406) 
0.2837 

(0.0358) Fail 0.2786 
(0.0358) 

2ϕ  0.1270 
(0.0376) 

0.0869 
(0.0338) Fail 0.0844 

(0.0339) 
0.0906 

(0.0409) 
0.0527 

(0.0330) Fail 0.0508 
(0.0331) 

1γ  0.0079 
(0.00821) 

0.0584 
(0.0513) Fail 0.0609 

(0.0523) 
0.0046 

(0.0019) 
0.0116 

(0.0070) Fail 0.0124 
(0.0083) 

1α  0.3431 
(0.3250) 

0.2527 
(0.2262) Fail 0.2539 

(0.2497) 
0.2231 

(0.2116) 
0.1567 

(0.1075) Fail 0.1456 
(0.1642) 

1β  0.6480 
(0.0641) 

0.7418 
(0.1228) Fail 0.7422 

(0.1194) 
0.7679 

(0.0119) 
0.8258 

(0.0347) Fail 0.8354 
(0.0373) 

υ  
  2.6442 

(0.3059) Fail 2.6113 
(0.3068)  2.7294 

(0.3478) Fail 2.6155 
(0.3448) 

ξ  
 

  Fail -0.0388 
(0.0463)   Fail -0.0734 

(0.0441) 
Notes: This table reports results from AR(2)-GARCH (1,1) estimation using different densities. The number 
of observations was reduced by one hundred for forecast evaluation purposes. Columns 2, 3, 4, 5 are the 
different model estimations using normal, student, GED and skewed student-t respectively. Asymptotic 
heteroskedasticity-consistent standard errors are given in parentheses, with (bold) denoting significance at 
the 5% level. The period investigated is from January 3, 1993 to September 10, 1996.  

 
 

Table 6: AR(2)-GJR (1,1) estimation results for sub-sample 1 
  HFI    EFGI   
 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ  0.0242 
(0.0359) 

0.0348 
(0.0246) Fail 0.0258 

(0.0327) 
0.0038 

(0.0267) 
0.0256 

(0.0198) Fail 0.0069 
(0.0257) 

1ϕ  0.2802 
(0.0357) 

0.2759 
(0.0343) Fail 0.2742 

(0.0347) 
0.2344 

(0.0384) 
0.2723 

(0.0342) Fail 0.2679 
(0.0346) 

2ϕ  0.1404 
(0.0359) 

0.0887 
(0.0322) Fail 0.0876 

(0.0324) 
0.0945 

(0.0389) 
0.0597 

(0.0312) Fail 0.0577 
(0.0313) 

1γ  0.0016 
(0.0009) 

0.0595 
(0.0365) Fail 0.0592 

(0.0364) 
0.0056 

(0.0021) 
0.0153 

(0.0082) Fail 0.0149 
(0.0082) 

1α  0.0485 
(0.0938) 

0.4618 
(0.2217) Fail 0.4726 

(0.2290) 
0.1145 

(0.0197) 
0.3132 

(0.1162) Fail 0.3432 
(0.1363) 

1β  0.9577 
(0.0063) 

0.7098 
(0.0982) Fail 0.7091 

(0.0975) 
0.08936 

(0.1234) 
0.8099 

(0.0378) Fail 0.8067 
(0.0373) 

1ω  -0.0140 
(0.0104) 

-0.1879 
(0.1459) Fail -0.1905 

(0.1485) 
-0.0128 
(0.0287) 

-0.0914 
(0.0940) Fail -0.0938 

(0.1016) 
υ  
  2.7377 

(0.2958) Fail 2.7248 
(0.2971)  2.8401 

(0.3409) Fail 2.7675 
(0.3414) 

ξ  
 

  Fail -0.0184 
(0.0444)   Fail -0.0475 

(0.0431) 
Notes: This table reports results from AR(2)-GJR (1,1) estimation using different densities. The number of 
observations was reduced by one hundred for forecast evaluation purposes. Columns 2, 3, 4, 5 are the 
different model estimations using normal, student, GED and skewed student-t respectively, with (bold) 
denoting significance at the 5% level. Asymptotic heteroskedasticity-consistent standard errors are given in 
parentheses. The period investigated is from January 3, 1993 to September 10, 1996.  
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Table 7: Post Estimation Statistics for Sub-Sample 1 Using a Normal Distribution 
 HFI EFGI 

 GARCH GJR  GJR 
AIC 2.2919 2.2931 1.9779 1.9798 
BIC 2.3234 2.3289 2.0094 2.0167 
LL -1044.840 -1043.931 -900.872 -900.773 
Q(20) 27.0796 28.3415 27.1476 26.9028 
Q2(20) 27.7842 29.9136 6.8547 6.8535 
P(50) 165.4973 156.2279 145.1047 142.2694 
P-Val (lag-1) (0.0000) (0.0000) (0.0000) (0.0000) 
P-Val(lag-k-1) [0.0000] [0.0000] [0.0000] [0.0000] 
Notes: Tables 7-9 compare post estimation statistics across models for the specifications that converged with 
the first sub-sample series. AIC, BIC are the Akaike and Swartz information criteria. LL, is the log 
likelihood value. Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the standardized and 
squared standardized residuals. P(50) is the Pearson Goodness-of-fit with 50 cells. P-values of the non-
adjusted and adjusted test are given respectively in parentheses and brackets. The period investigated is from 
Jan 3, 1993 to Sept 10, 1996.  
 
 
 
 
Table 8: Post Estimation Statistics for Sub-Sample 1 Using a Student-t Distribution 

 HFI EFGI 
 GARCH GJR GARCH GJR 

AIC 1.9999 2.0016 1.7329 1.7339 
BIC 2.0367 2.0417 1.7697 1.7760 
LL -909.983 -908.839 -787.570 -787.027 
Q(20) 22.6572 22.4837 22.1934 21.0600 
Q2(20) 51.5792 52.7243 8.0535 7.7841 
P(50) 62.4438 59.8266 45.7590 63.7525 
P-Val (lag-1) (0.0939) (0.1382) (0.0605) (0.0766) 
P-Val(lag-k-1) [0.0218] [0.02891] [0.0318] [0.0129] 
 
 
 
 
Table 9: Post Estimation Statistics for sub-sample 1 using a Skewed-t Distribution 
 HFI EFGI 
 GARCH GJR GJR GJR 
AIC 2.0019 2.0018 1.7337 1.7348 
BIC 2.0439 2.0489 1.7757 1.7821 
LL -909.889 -908.754 -786.903 -786.419 
Q(20) 22.5149 22.3562 20.5837 19.6528 
Q2(20) 52.3955 53.5165 7.8765 7.6543 
P(50) 57.4275 54.4831 51.8659 58.4089 
P-Val (lag-1) (0.1912) 0.2738 (0.2678) (0.1680) 
P-Val(lag-k-1) [0.0457] [0.0531] (0.0989) [0.0301] 
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Table 10: Post Estimation Statistics for Sub-Sample 1 Using GARCH 
 HFI EFGI 
 Normal Student-t Skewed-t Normal Student-t Skewed-t 

AIC 2.2919 1.9999 2.0019 1.9779 1.7329 1.7337 
BIC 2.3234 2.0367 2.0439 2.0094 1.7697 1.7757 
LL -1044.84 -909.98 -909.88 -900.87 -787.57 -786.90 
Q(20) 27.0796 22.6572 22.5149 27.1476 22.1934 20.5837 
Q2(20) 27.7842 51.5792 52.3955 6.8547 8.0535 7.8765 
P(50) 165.497 62.4438 57.4275 145.1047 45.7590 51.8659 
P-Val (lag-1) (0.0000) (0.0939) (0.1912) (0.0000) (0.0605) (0.2627) 
P-Val(lag-k-1) [0.0000] [0.0218] [0.0457] [0.0000] [0.0318] [0.0989] 
Notes: Table 10-11 compare post estimation statistics across distributions for the specifications that 
converged with the first sub-sample series. AIC, BIC are the Akaike and Swartz information criteria. LL, is 
the log likelihood value. Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the 
standardized and squared standardized residuals. P(50) is the Pearson Goodness-of-fit with 50 cells. P-values 
of the non-adjusted and adjusted test are given respectively in parentheses and brackets. The period 
investigated is from Jan 3, 1993 to Sept 10, 1996.  
 
 
Table 11: Post Estimation Statistics for Sub-Sample 1 Using GJR 

 HFI EFGI 
 Normal Student-t Skewed-t Normal Student-t Skewed-t 

AIC 2.2931 2.0016 2.0018 1.9798 1.7339 1.7348 
BIC 2.3289 2.0417 2.0489 2.0167 1.7760 1.7821 
LL -1043.93 -908.83 -908.75 -900.77 -787.02 -786.42 
Q(20) 28.3415 22.4937 22.3562 26.9028 21.0612 19.6528 
Q2(20) 29.9136 52.7243 53.5165 6.8535 7.7841 7.6543 
P(50) 156.2279 59.8266 54.4831 142.269 63.7525 58.4089 
P-Val (lag-1) (0.0000) (0.1382) (0.2738) (0.0000) (0.0766) (0.0168) 
P-Val(lag-k-1) [0.0000] [0.0289] [0.0530] [0.0000] [0.0129] [0.0301] 
 
 
Table 12: AR(1)-GARCH (1,1) estimation results for sub-sample 2 

  HFI    EFGI   
 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 
0ϕ  -0.0436 

(0.0343) 
-0.0784 
(0.0314) 

-0.0712 
(0.0325) 

-0.0495 
(0.0344) 

-0.0505 
(0.0339) 

-0.0720 
(0.0317) 

-0.0671 
(0.0328) 

-0.0529 
(0.0342) 

1ϕ  0.2974 
(0.0315) 

0.3037 
(0.0312) 

0.02965 
(0.0307) 

0.3120 
(0.0313) 

0.2736 
(0.0310) 

0.2767 
(0.0311) 

0.2754 
(0.0318) 

0.2812 
(0.0311) 

1γ  0.0585 
(0.0129) 

0.0332 
(0.1060) 

0.0442 
(0.0125) 

0.0337 
(0.1067) 

0.0532 
(0.0122) 

0.0351 
(0.0109) 

0.0435 
(0.0122) 

0.0353 
(0.0110) 

1α  0.3543 
(0.0497) 

0.3810 
(0.0583) 

0.3700 
(0.0577) 

0.3687 
(0.0577) 

0.3409 
(0.0479) 

0.3564 
(0.0544) 

0.3488 
(0.0539) 

0.3467 
(0.0542) 

1β  0.6575 
(0.0368) 

0.6725 
(0.0384) 

0.6646 
(0.0403) 

0.6812 
(0.0387) 

0.6715 
(0.0366) 

0.6827 
(0.0386) 

0.6773 
(0.0398) 

0.6895 
(0.0393) 

υ  
 

 7.7052 
(1.6180) 

1.4717 
(0.0846) 

7.8586 
(1.7111) 

 9.8063 
(2.5201) 

1.5809 
(0.0919) 

9.9566 
(2.6137) 

ξ  
 

   0.1050 
(0.0448) 

   0.0744 
(0.0449) 

Notes: This table reports results from AR(1)-GARCH (1,1) estimation using different densities. The number 
of observations was reduced by one hundred for forecast evaluation purposes. Columns 2, 3, 4, 5 are the 
different model estimations using normal, student, GED and skewed student-t respectively. Asymptotic 
heteroskedasticity-consistent standard errors are given in parentheses, with (bold) denoting significance at 
the 5% level. The period investigated is from February 2, 1997 to March 8, 2001.  
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Table 13: AR(1)-GJR (1,1) Estimation Results for Sub-Sample 2 
  HFI    EFGI   
 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ  -0.0730 
(0.0360) 

-0.1066 
(0.0325) 

-0.0974 
(0.0328) 

-0.0783 
(0.0351) 

-0.0754 
(0.0357) 

-0.0965 
(0.0332) 

-0.0899 
(0.0343) 

-0.0776 
(0.0353) 

1ϕ  0.2931 
(0.0314) 

0.2981 
(0.0311) 

0.2911 
(0.0289) 

0.3013 
(0.0311) 

0.2702 
(0.0310) 

0.2739 
(0.0310) 

0.2727 
(0.0320) 

0.2750 
(0.0310) 

1γ  0.0559 
(0.0126) 

0.0315 
(0.0102) 

0.0418 
(0.0121) 

0.0311 
(0.0101) 

0.0512 
(0.0120) 

0.0336 
(0.0106) 

0.0416 
(0.0119) 

0.0335 
(0.0106) 

1α  0.2921 
(0.0476) 

0.2902 
(0.0538) 

0.2900 
(0.0535) 

0.2804 
(0.0527) 

0.2863 
(0.0476) 

0.2871 
(0.0527) 

0.2847 
(0.0525) 

0.2790 
(0.0519) 

1β  0.6580 
(0.0363) 

0.6761 
(0.0378) 

0.6664 
(0.0396) 

0.6838 
(0.0378) 

0.6751 
(0.0360) 

0.6868 
(0.0379) 

0.6816 
(0.0391) 

0.6923 
(0.0384) 

1ω  0.1348 
(0.0587) 

0.1876 
(0.0711) 

0.1708 
(0.0697) 

0.1798 
(0.0685) 

0.1074 
(0.0540) 

0.1374 
(0.0629) 

0.1267 
(0.0614) 

0.1349 
(0.0614) 

υ  
 

 7.6317 
(1.5682) 

1.4712 
(0.0835) 

7.8635 
(1.6844) 

 9.6895 
(2.4451) 

1.5795 
(0.0911) 

9.9519 
(2.5851) 

ξ  
 

   0.1032 
(0.0448) 

   0.0747 
(0.0447) 

Notes: This table reports results from AR(1)-GJR (1,1) estimation using different densities. The number of 
observations was reduced by one hundred for forecast evaluation purposes. Columns 2, 3, 4, 5 are the 
different model estimations using normal, student, GED and skewed student-t respectively. Asymptotic 
heteroskedasticity-consistent standard errors are given in parentheses, with (bold) denoting significance at 
the 5% level. The period investigated is from February 2, 1997 to March 8, 2001.  
 
 
Table 14: AR(1)-APARCH (1,1) Estimation Results for Sub-Sample 2 

  HFI    EFGI   
 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ  -0.0682 
(0.0378) 

-0.1057 
(0.0326) 

-0.0955 
(0.0345) 

-0.0752 
(0.0366) 

-0.0734 
(0.0360) 

-0.0965 
(0.0331) 

-0.0893 
(0.0345) 

-0.0772 
(0.0354) 

1ϕ  0.3007 
(0.0321) 

0.3005 
(0.0313) 

0.2960 
(0.0317) 

0.3042 
(0.0315) 

0.2706 
(0.0312) 

0.2739 
(0.0310) 

0.2731 
(0.0321) 

0.2751 
(0.0310) 

1γ  0.0654 
(0.0142) 

0.0356 
(0.0124) 

0.0491 
(0.0144) 

0.0361 
(0.0122) 

0.0554 
(0.0136) 

0.0333 
(0.0122) 

0.0440 
(0.0137) 

0.0342 
(0.0122) 

1α  0.3328 
(0.0443) 

0.3620 
(0.0572) 

0.3493 
(0.0535) 

0.3446 
(0.0551) 

0.3275 
(0.0461) 

0.3536 
(0.0573) 

0.3385 
(0.0537) 

0.3408 
(0.0560) 

1β  0.6870 
(0.0359) 

0.6939 
(0.0433) 

0.6908 
(0.0417) 

0.7062 
(0.0427) 

0.6915 
(0.0403) 

0.6852 
(0.0487) 

0.6918 
(0.0460) 

0.6959 
(0.0485) 

1τ  0.0978 
(0.0441) 

0.1267 
(0.0466) 

0.1188 
(0.0482) 

0.1256 
(0.0477) 

0.0804 
(0.0411) 

0.0973 
(0.0428) 

0.0926 
(0.0444) 

0.0985 
(0.0434) 

δ  
 

1.4600 
(0.2856) 

1.7215 
(0.3706) 

1.5785 
(0.3430) 

1.6533 
(0.3629) 

1.7186 
(0.3670) 

2.0253 
(0.4770) 

1.8313 
(0.4299) 

1.9451 
(0.4635) 

υ  
 

 7.7057 
(1.6078) 

1.4782 
(0.0845) 

7.9737 
(1.7466) 

 9.6814 
(2.4453) 

1.5815 
(0.0916) 

9.9763 
(2.6088) 

ξ  
 

   0.1063 
(0.0450) 

   0.0752 
(0.0449) 

Notes: This table reports results from AR(1)-APARCH (1,1) estimation using different densities. The 
number of observations was reduced by one hundred for forecast evaluation purposes. Columns 2, 3, 4, 5 are 
the different model estimations using normal, student, GED and skewed student-t respectively. Asymptotic 
heteroskedasticity-consistent standard errors are given in parentheses, with (bold) denoting significance at 
the 5% level. The period investigated is from February 2, 1997 to March 8, 2001.  
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Table 15: Post Estimation Statistics for Sub-Sample 2 Using a Normal Distribution 
HFI EFGI 

GARCH GJR APARCH GARCH GJR APARCH 
AAa 3.0126 3.0093 3.0087 3.0881 3.0862 3.0876
BIC 3.0368 3.0362 3.3017 3.1195 3.1101 3.1190 
LL -1680.570 -1677.726 -1676.408 -1722.82 -1720.768 -1720.516 
Q(20) 38.7892 40.9358 39.7497 35.6250 38.9075 38.8009 
Q2(20) 17.7525 18.5805 18.0303 21.6192 22.3666 22.1063 
P(50) 66.6850 49.4093 60.9374 51.1072 56.0223 54.3244 
P-Val (lag-1) (0.0471) (0.0456) (0.1178) (0.0390) (0.0228) (0.0278) 
P-Val(lag-k-1) [0.0152] [0.0232] [0.0294] [0.0214] [0.0087] [0.0096] 
Notes: Tables 15-18 compare post estimation statistics across models for the specifications that converged 
with the first sub-sample series. AIC, BIC are the Akaike and Swartz information criteria. LL, is the log 
likelihood value. Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the standardized and 
squared standardized residuals. P(50) is the Pearson Goodness-of-fit with 50 cells. P-values of the non-
adjusted and adjusted test are given respectively in parentheses and brackets. The period investigated is from 
February 2, 1997 to March 8, 2001. 
 
Table 16: Post Estimation Statistics for Sub-Sample 2 Using a Student-t Distribution 

 HFI EFGI 
 GARCH GJR APARCH GARCH GJR APARCH 

AIC 2.9806 2.9754 2.9767 3.0688 3.0660 3.0678
BIC 3.0075 3.0068 3.0126 3.0967 3.0964 3.1037 
LL -1661.667 -1657.744 -1657.503 -1711.00 -1708.451 -1708.451 
Q(20) 38.0908 43.9911 43.7125 37.3773 41.8335 41.8408 
Q2(20) 20.1930 20.9786 20.6143 23.8263 24.0072 24.0410 
P(50) 39.4004 27.5147 37.0769 64.0652 48.1582 46.1921 
P-Val (lag-1) (0.0834) (0.0994) (0.0894) (0.0728) (0.0507) (0.0587) 
P-Val(lag-k-1) [0.0628] [0.0958] (0.0645) (0.0202) [0.0237] [0.0266] 
 
Table 17: Post Estimation Statistics for Sub-Sample 2 Using a GED Distribution 

 HFI EFGI 
 GARCH GJR APARCH GARCH GJR APARCH 

AIC 2.9888 2.9846 2.9854 3.0752 3.0730 3.0746
BIC 3.0157 3.0160 3.0212 3.1021 3.1044 3.1105 
LL -1666.27 -1662.93 -1662.34 -1714.61 -1712.36 -1712.28 
Q(20) 38.2406 43.6063 42.8182 36.384 40.3427 40.2542 
Q2(20) 19.1555 19.9843 19.4103 22.8130 23.3187 23.1316 
P(50) 39.5791 34.2172 43.0643 50.6604 48.4263 45.5666 
P-Val (lag-1) (0.0829) (0.0946) (0.0711) (0.0407) (0.0496) (0.0613) 
P-Val(lag-k-1) [0.0620] [0.0797] [0.0382] [0.0196] [0.0229] [0.0287] 
 
Table 18: Post estimation Statistics for Sub-Sample 2 Using a Skewed-t Distribution 

HFI EFGI 
GARCH GJR APARCH GARCH GJR APARCH 

AIC 2.9774 2.9724 2.9735 3.0682 3.0653 3.0671 
BIC 3.0088 3.0083 3.0139 3.0996 3.0912 3.1005 
LL -1658.89 -1655.08 -1654.70 -1709.66 -1707.09 -1707.08 
Q(20) 37.0505 43.3402 42.9835 36.5826 41.5144 41.5002 
Q2(20) 20.5418 21.5452 21.4203 23.886 24.2280 24.1888 
P(50) 40.5621 41.7239 48.9625 44.0474 40.2046 43.4218 
P-Val (lag-1) (0.0799) (0.0760) (0.0476) (0.0673) (0.0810) (0.0697) 
P-Val(lag-k-1) [0.0534] [0.0439] [0.0156] [0.0384] [0.0505] [0.0327] 
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Table 19: Post Estimation Statistics for Sub-Sample 2 Using GARCH 
 HFI EFGI 
 Normal Stud-t GED Skew-t Normal Stud-t GED Skewed-t 

AIC 3.0126 2.9806 2.9888 2.9774 3.0881 3.0688 3.0752 3.0682 
BIC 3.0360 3.0075 3.0157 3.0088 3.1195 3.0967 3.1021 3.0996 
LL -1680.57 -1661.67 -1666.27 -1658.89 -1722.82 -1711.01 -1714.61 -1709.66 
Q(20) 38.7892 38.0908 38.2406 37.0505 35.625 37.3773 36.3840 36.5826 
Q2(20) 17.7525 20.1930 19.1555 20.5418 21.6192 23.8263 22.8130 23.886 
P(50) 66.6850 39.4004 39.5791 40.5621 51.1072 64.0652 50.6604 44.0474 
P-Val (0.0471) (0.0834) (0.0829) (0.0799) (0.0390) (0.0728) (0.0407) (0.0673)
P-Val [0.0152] [0.0628] [0.0620] [0.0534] [0.0214] [0.0202] [0.0196] [0.0384]
Notes: Table 19-21 compare post estimation statistics across distributions for the specifications that 
converged with the first sub-sample series. AIC, BIC are the Akaike and Swartz information criteria. LL, is 
the log likelihood value. Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the 
standardized and squared standardized residuals. P(50) is the Pearson Goodness-of-fit with 50 cells. P-values 
of the non-adjusted and adjusted test are given respectively in parentheses and brackets. The period 
investigated is from February 2, 1997 to March 8, 2001.  
 
 
 
 
Table 20: Post Estimation Statistics for Sub-Sample 2 Using GJR 

HFI EFGI 
Normal Stud-t GED Skew-t Normal Stud-t GED Skewed-t 

AIC 3.0093 2.9754 2.9846 2.9724 3.0862 3.0660 3.0730 3.0653 
BIC 3.0362 3.0068 3.0160 3.0083 3.1101 3.0964 3.1044 3.0912 
LL -1677.73 -1657.74 -1662.93 -1655.079 -1720.77 -1708.45 -1712.35 -1707.09 
Q(20) 40.9358 43.9911 43.6063 43.3402 38.9075 41.8335 40.3427 41.5144 
Q2(20) 18.5805 20.9786 19.9843 21.5452 22.3666 24.0072 23.3187 24.2280 
P(50) 49.4093 27.5147 34.2172 41.7239 56.0223 48.1582 48.4263 40.2046 
P-Val  (0.0456) (0.0994) (0.0946) (0.0760) (0.0228) (0.0507) (0.0496) (0.0810)
P-Val [0.0232] [0.0958] [0.0797] [0.0439] [0.0087] [0.0237] [0.0229] [0.0505]
 
 
 
 
Table 21: Post Estimation Statistics for Sub-Sample 2 Using APARCH 

HFI EFGI 
Normal Stud-t GED Skew-t Normal Stud-t GED Skewed-t

AIC 3.0087 2.9767 2.9854 2.9735 3.0876 3.0678 3.0746 3.0671 
BIC 3.3017 3.0126 3.0212 3.0139 3.1190 3.1037 3.1105 3.1005 
LL -1676.41 -1657.50 -1662.33 -1654.70 -1720.52 -1708.45 -1712.28 -1707.08 
Q(20) 39.7497 43.7125 42.8182 42.9835 38.8009 41.8408 40.2542 41.5002 
Q2(20) 18.0303 20.6143 19.4103 21.4203 22.1063 24.0410 23.1316 24.1888 
P(50) 60.9374 37.0769 43.0643 48.9625 54.3244 46.1921 45.5666 43.4218 
P-Val (0.1178) (0.0894) (0.0711) (0.0476) (0.0278) (0.0587) (0.0613) (0.0697)
P-Val (0.0294) [0.0645] [0.0382] [0.0156] [0.0096] [0.0266] [0.0287] [0.0327]
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Table 22: Forecasts Performance-Model Comparison for Sub-Sample 1 

 HFI EFGI 
 Normal 
 GARCH GJR GARCH GJR 

MSPE 1 2 1 2 
AMAPE 1 2 2 1 
TIC 1 2 1 2 
RS 1 2 1 2 
Total 4 8 5 7 
 Student-t 
 GARCH GJR GARCH GJR 
MSPE 1 2 2 1 
AMAPE 1 2 2 1 
TIC 2 1 2 1 
RS 1 2 1 2 
Total 5 7 7 5 
 Skewed-t 
 GARCH GJR GARCH GJR 
MSPE 1 2 1 2 
AMAPE 2 1 2 1 
TIC 2 1 2 1 
RS 1 2 1 2 
Total 6 6 6 6 
Notes: This table compares post estimation forecasts across models for the specifications that converged 
with the first sub-sample series. The forecasting abilities are reported by ranking the models on a scale from 
1…n (depending on convergence). MSPE is Mean Squared Percentage Error, AMAPE is Adjusted Mean 
Absolute Error, TIC is the Theil Inequality Coefficient and RS is the R Squared of equation (25). The 
“actual” volatility proxy used here is the squared returns. 
 
 
Table 23: Forecasts Performance-Distribution Comparison for Sub-Sample 1 

HFI 
  GARCH   GJR  
 Normal Student-t Skewed-t Normal Student-t Skewed-t 

MSPE 1 2 3 1 2 3 
AMAPE 1 2 3 1 2 3 
TIC 1 2 3 1 2 3 
RS 1 2 3 1 2 3 
Total 4 8 12 4 8 12 

EFGI 
  GARCH   GJR  
MSPE 1 2 3 1 2 3 
AMAPE 1 2 3 1 2 3 
TIC 1 2 3 1 2 3 
RS 1 2 3 1 2 3 
Total 4 8 12 4 8 12 
Notes: This table compares post estimation forecasts across distributions for the specifications that 
converged with the first sub-sample series. The forecasting abilities are reported by ranking the models on a 
scale from 1…n (depending on convergence). MSPE is Mean Squared Percentage Error, AMAPE is 
Adjusted Mean Absolute Error, TIC is the Theil Inequality Coefficient and RS is the R Squared of equation 
(25). The “actual” volatility proxy used here is the squared returns. 
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Table 24: Forecasts performance-model comparison for sub-sample 2 
 HFI EFGI 
 Normal 
 GARCH GJR APARCH GARCH GJR APARCH 

MSPE 2 3 1 2 3 1 
AMAPE 2 3 1 2 3 1 
TIC 2 3 1 2 3 1 
RS 3 2 1 2 3 1 
Total 9 11 4 8 12 4 

 Student-t 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 2 3 1 1 2 3 
AMAPE 2 3 1 1 2 3 
TIC 2 3 1 1 2 3 
RS 2 3 1 3 1 2 
Total 8 12 4 6 7 11 

 GED 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 2 3 1 2 3 1 
AMAPE 2 3 1 2 3 1 
TIC 3 2 1 2 3 1 
RS 3 2 1 3 2 1 
Total 10 10 4 9 11 4 
 Skewed-t 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 2 3 1 3 2 1 
AMAPE 3 2 1 3 2 1 
TIC 3 2 1 2 3 1 
RS 3 2 1 2 3 1 
Total 11 9 4 10 10 4 
Notes: This table compares post estimation forecasts across models for the specifications that converged 
with the second sub-sample series. The forecasting abilities are reported by ranking the models on a scale 
from 1…n (depending on convergence). MSPE is Mean Squared Percentage Error, AMAPE is Adjusted 
Mean Absolute Error, TIC is the Theil Inequality Coefficient and RS is the R Squared of equation (25). The 
“actual” volatility proxy used here is the squared returns. 
 
Table 25. Forecasts performance-distribution comparison for sub-sample 2 

 HFI 
 GARCH GJR APARCH 
 Norm St GED Sk Norm St GED Sk Norm St GED Sk 

MSPE 1 4 2 3 1 4 2 3 1 3 2 4 
AMAPE 1 4 2 3 1 4 2 3 1 3 2 4 
TIC 1 4 2 3 1 4 2 3 1 4 2 3 
RS 1 3 2 4 1 4 2 3 1 3 2 4 
Total 4 15 8 13 4 16 8 12 4 13 8 15 
 EFGI 
 GARCH GJR APARCH 
 Norm St GED Sk Norm St GED Sk Norm St GED Sk 
MSPE 1 4 2 3 1 4 2 3 1 4 2 3 
AMAPE 1 4 2 3 1 4 2 3 1 4 2 3 
TIC 1 4 2 3 1 4 2 3 1 4 2 3 
RS 1 3 2 4 1 4 2 3 1 4 2 3 
Total 4 15 8 13 4 16 8 12 4 16 8 12 
Notes: This table compares post estimation forecasts across distributions for the specifications that 
converged with the second sub-sample series. The forecasting abilities are reported by ranking the models on 
a scale from 1…n (depending on convergence). MSPE is Mean Squared Percentage Error, AMAPE is 
Adjusted Mean Absolute Error, TIC is the Theil Inequality Coefficient and RS is the R Squared of equation 
(25). The “actual” volatility proxy used here is the squared returns. 
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Table 26: Forecasts Performance-Model Comparison for Sub-Sample 2 
 HFI EFGI 
 Normal 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 3 1 2 3 2 1 
AMAPE 3 1 2 3 1 2 
TIC 3 1 2 3 1 2 
RS 1 2 3 1 2 3 
Total 10 5 9 10 6 8 
 Student-t 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 2 3 1 1 3 2 
AMAPE 2 3 1 2 3 1 
TIC 2 3 1 2 3 1 
RS 3 2 1 3 2 1 
Total 9 11 4 8 11 5 
 GED 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 2 3 1 1 3 1 
AMAPE 2 3 1 1 3 2 
TIC 1 3 2 1 3 2 
RS 3 2 1 1 2 3 
Total 8 11 5 4 11 8 
 Skewed-t 
 GARCH GJR APARCH GARCH GJR APARCH 
MSPE 3 1 2 3 1 2 
AMAPE 3 1 2 3 1 2 
TIC 3 1 2 3 1 2 
RS 3 2 1 3 2 1 
Total 12 5 7 12 5 7 
Notes: This table compares post estimation forecasts across models for the specifications that converged 
with the second sub-sample series. The forecasting abilities are reported by ranking the models on a scale 
from 1…n (depending on convergence). MSPE is Mean Squared Percentage Error, AMAPE is Adjusted 
Mean Absolute Error, TIC is the Theil Inequality Coefficient and RS is the R Squared of equation (25). The 
“actual” volatility proxy used here is the High-Low proxy in (26). 
 
Table 27: Forecasts Performance-Distribution Comparison for Sub-Sample 2 

 HFI 
 GARCH GJR APARCH 
 Norm St GED Sk Norm St GED Sk Norm St GED Sk 

MSPE 1 3 2 4 1 3 2 4 3 2 1 4 
AMAPE 3 3 2 4 3 2 1 4 1 2 3 4 
TIC 1 3 2 4 3 2 1 4 1 2 3 4 
RS 1 4 2 3 1 4 2 3 2 1 3 4 
Total 6 13 8 15 8 11 6 15 7 7 10 16 
 EFGI 
 GARCH GJR APARCH 
 Norm St GED Sk Norm St GED Sk Norm St GED Sk 
MSPE 1 3 2 4 2 3 1 4 1 2 3 4 
AMAPE 3 4 2 3 3 1 2 4 2 1 3 4 
TIC 1 3 2 4 1 4 2 3 1 2 3 4 
RS 1 4 2 3 1 4 2 3 1 2 3 4 
Total 6 14 8 14 7 12 7 14 5 7 12 16 
Notes: This table compares post estimation forecasts across distributions for the specifications that 
converged with the second sub-sample series. The forecasting abilities are reported by ranking the models on 
a scale from 1…n (depending on convergence). MSPE is Mean Squared Percentage Error, AMAPE is 
Adjusted Mean Absolute Error, TIC is the Theil Inequality Coefficient and RS is the R Squared of equation 
(25). The “actual” volatility proxy used here is the High-Low proxy in (26). 
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