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Abstract 

We investigated the impact of alternative variance equation specifications and different 
densities on the forecasting of one-day-ahead value-at-risk for the Istanbul stock market. The 
three employed models are symmetric GARCH(1,1) of Bollerslev (1986), symmetric 
GARCH(1,1) of Taylor (1986) and APGARCH(1,1) of Ding et al. (1996) models, under three 
distributions. The comparison focuses on two different aspects: the difference between 
symmetric and asymmetric GARCH (i.e., GARCH versus APGARCH) and the difference 
between normal-tailed and fat-tailed distributions (i.e., Normal, Student-t, and GED). The 
GARCH(1,1) of Taylor was found to be unjustified since convergence could not be achieved. 
Also, we examined if the estimated coefficients are time-varying. We executed a fixed size 
rolling sample estimation to provide the one-step-ahead variance forecasts required to generate 
the one-step-ahead VaR. Our results indicate that the APGARCH(1,1) with t-distribution 
model outperform its competitors regarding out-of-sample forecasting ability. Moreover, we 
found that the power transformation parameter of APGARCH model was time-variant. In 
contrast, degrees of freedom of t-distribution and thickness parameter of GED distribution are 
time-invariant indicating that fat-tailedness of innovation does not change over time. Thus, 
these findings suggest that the student-t APGARCH(1,1) model could be used by conservative 
investors to evaluate their investment risk. Also, both exchanges and regulators may benefit 
from using that model when the market faces turmoil and becomes more volatile.  

JEL Classifications: C32, C52, C53, G15. 

Keywords: value-at-risk, fat-tails, leverage effect, rolling sample, financial markets. 
 

 

  ملخص
  
التحقیق في تأثیر مواصѧѧѧفات التباین المعادلة البدیلة وكثافات مختلفة على التنبؤ یوما متقدما بنقطة واحدة القیمة المعرضѧѧѧة للخطر ب قومن

من  )1،1(جارش متماثل ، (1986) بورسѧѧѧѧѧѧلف ) من1،1(جارش متماثل لسѧѧѧѧѧѧوق الأوراق المالیة اسѧѧѧѧѧѧطنبول. نماذج العاملات الثلاث 

ثل ) و1986تایلور ( ما جانبین  .)1996( من دینغ وآخرون )1،1(جارش ابمت عات. وتركز المقارنة على  ماذج، تحت ثلاثة التوزی ن

) والفرق بین التوزیع الطبیعي جارشابمتماثل مقابل  جارش متماثل المتماثلة وغیر المتماثلة (أي  جارش متماثل  مختلفین: الفرق بین

من تایلور أن یكون غیر مبرر منذ التقارب لا یمكن أن یتحقق. أیضѧѧѧѧѧѧѧا،  )1،1(جارش متماثل تم العثور على  .الذیل والذیل الدھون

 درسѧѧѧѧѧѧѧنا إذا كانت المعاملات المقدرة ھي زمنیة متفاوتة. نفذنا حجم ثابت عینة المتداول تقدیر لتقدیم توقعات التباین خطوة للأمام واحدة

مع نموذج توزیع  )1،1(جارش ابمتماثل وید القیمة المعرضѧѧѧѧѧѧة للخطر، خطوة متقدما بنقطة واحدة. نتائجنا تشѧѧѧѧѧѧیر إلى أن اللازمة لتول

كان جارش ابمتماثل وتفوق منافسیھا فیما یتعلق بمدى قدرة التنبؤ خارج العینة. وعلاوة على ذلك، وجدنا أن المعلمة تحول قوة النموذج 

 .للزمن  ىتة لتوزیع الوقت البدیل. في المقابل، درجات الحری

 



2 
 

1. Introduction 
The second moment of returns has been commonly accepted as a proxy measure for risk 
[(Markowitz (1959); Sharpe (1964); Lintner (1965)]. Thus, conditional variance plays a crucial 
role in asset pricing, the portfolio selection, and risk management. Immense efforts have been 
devoted to modelling and forecasting stock market volatility using the family of ARCH models 
due to their ability to capture the dynamics of the conditional variance (e.g. volatility clustering 
and persistence)  [Bollerslev et al. (1992); Ser-Huang and Granger (2003)]. The presence of 
volatility clustering is not distinctive to the squared returns of an asset’s price since; in general, 
the absolute changes in an asset’s price also exhibit volatility clustering. The common use of a 
squared term in this role is a reflection of the normality assumption traditionally invoked 
regarding the data1. Subsequent research, trying to improve capturing the stylized 
characteristics of financial series, gave birth to two competing families of GARCH models. 
Given that absolute returns exhibit strong long-term dependency, Taylor (1986) introduced a 
competitive family by specifying a power term of unity and directly linking the conditional 
standard deviation of a series to lagged absolute residuals and past standard deviations. Both 
models of Bollerslev (1986) and Taylor (1986) assume that conditional volatility is affected 
symmetrically by positive and negative innovations ignoring the leverage effect2. Equity 
returns are found to be negatively correlated with changes in returns volatility. In other words, 
volatility tends to fall in response to good news (i.e., excess returns higher than expected) and 
to rise in response to bad news (i.e., excess return lower than predicted).  

The inclusion of any power term acts to capture volatility clustering. The preference given to 
squared terms (Bollerslev, 1986) or even a power of unity (Taylor, 1986) is inherited from the 
Gaussian assumption traditionally made in many modelling exercises. This could be 
investigated as, in this context, the expected square returns could be directly related to the 
variance and also the expected absolute returns to the standard deviation (Ane՛, 2006). 
However, high-frequency financial time series are very likely to exhibit non-normal error 
distributions.  Thus, squaring the returns or taking their absolute values imposes a structure on 
non-normal time series data that may furnish sub-optimal modelling and forecasting 
performance relative to other power terms [Brooks et al. (2000); Ane՛ (2005)]. For this reason, 
Ding et al. (1993) suggested a new class of models known as the Asymmetric Power GARCH 
(APGARCH) wherein the power term by which the data are transformed, is estimated within 
the model instead of being imposed by the researcher. Thus, this model permits an infinite 
range of transformations inclusive of any positive value. It has been demonstrated to comprise 
a variety of ARCH specifications [Ding et al.(1993); Tse and Tsui (1997)]. 

The need for modelling the downside risk has rapidly grown in response to the financial crisis 
(i.e. the market crash in 1987, the Asian crisis in 1997, and the recent American subprime 
mortgage crisis). Thus, modelling the Value-at-Risk (VaR), serving as a risk management tool, 
has become one of the key measures of financial market risk. ARCH models have been 
extensively applied in the estimation of VaR for exchange rates, stock, and commodity markets 
[Füss et.al. (2007); Füss et al. (2010); Iqbal et al. (2010); Hung et al. (2008); Bams et al. (2005); 
Ane՛ (2006)]. Füss et al. (2007) and Füss et al. (2010) concluded that GARCH-type VaR 
outperform other VaR approaches [i.e. conventional VaR, and the Cornish Fisher-VaR]. There 
is no conclusive evidence regarding the superiority of APGARCH model in modelling financial 
time series and forecasting VaR [Giot and Laurent (2003a, 2003b);  Huang and Lin (2004); 

                                                            
1 If a data series follows the normal distribution, then we can characterize its distribution completely by its first two moments. Thus, it is 
appropriate to focus on a squared term and hence a measure of the volatility. 
2 GARCH models have some drawbacks in asset pricing applications. GARCH models impose non-negativity restrictions to ensure positivity 
of conditional variance which may unduly restrict the dynamics of the conditional variance process. Another drawback of GARCH modelling 
concerns the interpretation of the persistence of shocks to conditional variance because the usual norms measuring persistence often do not 
agree. The issue of volatility persistence is central in assets pricing. If shocks to volatility persist indefinitely, they are likely to move the whole 
term structure of risk premia. Accordingly, they are likely to significantly influence investment on long-lived capital goods (Nelson, 1991). 
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Tse and Tsui (1997); Mckenzie and Mitchell (2002); Ane՛ (2005); Brooks et al. (2000)]. Abad 
et al. (2013) conducted a comprehensive review of value at risk methodologies. They 
concluded that the empirical evidence of the distribution performance in estimating VaR is not 
inclusive. Thus, the best distribution and the best GARCH model to predict VaR are still 
practical issues.  

To enhance the role of its stock market and attract foreign investors, Turkey has taken 
significant actions to liberalize and improve the trading environment3. FTSE has recently 
classified ISE as developed exchange since it has passed the transparency criteria and other 
criteria of market quality set by FTSE (Ahmed, 2011; 2014). Due to the convenient investment 
environment, the share of foreign investors in the ISE reached 70% of market capitalisation in 
2007 (Kasman and Torun, 2007). Compared to other exchanges in the Middle East and North 
Africa (MENA) region4, the ISE is considered the most liquid during period 1995-2009 
(Ahmed, 2011; 2014). In 2007, the ISE was ranked to be the tenth best-performing exchange 
among the WFE5  members and the fifth best-performing exchange in Europe region (Kasman 
and Torun, 2007). The ISE is integrated with international financial markets. Ergun and Nor 
(2010) found significant volatility spillovers from the United States (NASDAQ) to the ISE for 
the period 1998-2008. Moreover, Celikkol et al. (2010) confirmed that the variance of ISE has 
significantly increased after the bankruptcy of Lehman Brothers. Ozun et al. (2010) used the 
time series of daily returns of the Istanbul Stock Index-100 (ISE-100) from January 2nd, 2002 
to April 18th, 2007 and concluded that filtered extreme value theory are superior to the 
parametric VaR models regarding capturing fat-tails in stock returns than parametric VaR 
models.  

Due to its role in portfolio diversification and risk management purposes, modelling volatility6 
of the ISE for the most recent period is of crucial importance for international and domestic 
investors given, the fluctuations in the volume of international portfolio investments and the 
unstable political environment in the MENA region. The current paper aims at examining the 
impact of alternative variance models under different distribution on forecasting the one-day-
ahead VaR for ISE during the most recent period. Further, we contribute to the literature by 
examining if the estimated parameters change across time. We address two questions: do the 
estimated parameters of employed GARCH model change across time? Do fat-tails and 
asymmetry matter in forecasting one-day-ahead VaR for the ISE? We hypothesize that (1) the 
time-varying parameters reflect the fact that structural properties and trading behaviour alter 
over time (Xekalaki and Degiannakis, 2010), and (2) asymmetric GARCH models with fat tails 
are expected to perform better than symmetric ones with normally distributed innovations in 
forecasting one-day-ahead VaR.  

To investigate those issues, the current paper applies APGARCH(1,1) and GARCH(1,1) 
models under three conditional densities (i.e. normal, Student t, and generalised error 
distributions) onto the MSCI-Turkey equity index for the period starting from 2nd January 2006 
to 28th August 2015. Employed Models are evaluated according to their ability to generate the 
most accurate one-day-ahead VaR at 95% level of confidence. In order to compute the one-
step-head variance forecasts required to create the one-step-ahead VaR, We use a fixed size 
                                                            
3 Actions taken by Turkey include the removal of restriction imposed on access of foreign investors to capital markets since 1989. Also, the 
introduction of American depository receipts in 1990 besides adopting automated trading systems in 1993. Additionally, regulatory reforms 
that include the establishment of regulatory bodies to ensure shareholders’ protection and to monitor market activities. To achieve international 
comparability in accounting disclosure, Turkey has amended its national accounting standards to converge with the international set of 
financial reporting and accounting standards (Ahmed, 2011; 2014). 
4 These exchanges are those of Cairo, Tel Aviv, Amman and Casablanca. 
5 EFE stands for World Federation of Exchanges. 
6 In the 1950s, Markowitz established the mean-variance theory of combining risky assets to minimize the volatility of portfolio at any 
preferred mean return. The position of optimum mean-variance combinations is called the efficient frontier, on which all rational investors 
want to be located. The full risk of a well-constructed and diversified portfolio should be less than the sum of the risks in the portfolio’s 
individual components. 
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rolling window of 1800 to produce 720 one-step- ahead volatility projections. With the aim of 
achieving closer real world accuracy, Xekalaki and Degiannakis (2010) recommended re-
estimating models every trading day. Thus, we use the first 1800 observations to estimate the 
parameters of the two models under the three employed distributions. The estimation window 
is then moved forward by one day, and the model of concern is re-estimated. This process 
keeps running forward day by day until the end of the entire data set. Employing the rolling 
window procedure to re-estimate the model parameters each trading day will allow testing if 
the estimated parameters of the variance equation are time-varying.  

The rest of paper is organised in the following way. Section 2 presents the volatility and VaR 
models employed in the paper. Then, the data description, preliminary analysis, and empirical 
findings (including the estimation of volatility models, VaR calculations and the out-of- sample 
forecasting results) are going to be reported in Section 3. Finally, section 4 concludes.  

2. Methodology 

2.1 Dynamics of conditional volatility  

Assume that the adjusted closing price of a market index at time t is denoted by ௧ܲ . The 
continuously compounded returns ܴ ௧ at time t, is computed as shown in Eq.1. If the stock return 
series displays significant first order autocorrelation, an AR(1) specification is employed as 
shown in Eq.2., where ߝ௧ is the error term in period t. If the t-statistic associated with the 
autoregressive parameter ߤଵ	 in Eq.2 is found to be insignificant, then a and näve no-change 
mean equation, expressed in Eq.3, is specified (Brooks et al, 2000).. 

	ܴ௧ ൌ 100 ∗ ln ቀ
௉೟
௉೟షభ

ቁ          (1) 

	ܴ௧ ൌ ଴ߤ ൅ ܴ௧ିଵ	ଵߤ ൅           (2)	௧ߝ

	ܴ௧ ൌ ଴ߤ ൅  ௧           (3)ߝ

The error term in the mean equation, whether Eq. 2 or 3 is specified, could be decomposed as 
shown in Eq.4, where ݁௧	in the current study is assumed to follow normal [i.e. ݁௧~	ܰሺ0,1ሻ] , or 
Student t with ݒ degrees of freedom  greater than two  [݁௧~	ݐሺ0,1,  , or generalised error	ሻሿݒ
distribution  with ߦ thickness of tail parameter that expected to be less than two for leptokurtoic 
distribution [݁௧~	ܦܧܩሺ0,1,  [ ሻߦ

௧ߝ ൌ             (4)		݁௧	௧ߪ

The asymmetric power GARCH(1,1) [henceforward APGARCH(1,1)] proposed by Ding et al. 
(1993) specifies ߪ௧ as expressed in Eq. 5. 

௧ߪ
ఋ ൌ ߱଴ ൅ ߱ଵሺ|ߝ௧ିଵ| െ ௧ିଵሻఋߝ	ଵߛ ൅ ௧ିଵߪ	ଵߚ

ఋ 	      (5) 

߱଴ ൒ 0,   ߱ଵ ൐ 0 ,     ൏ ଵߛ ൏ ଵߚ ,  1 ൒ ߜ     0 ൐ 0 

Where ߱ଵ  and  ߚଵ represent the standard ARCH and GARCH parameters respectively, 
 corresponds to the optimal power that plays the ߜ represents the leverage parameter, and	ଵߛ
role of a Box-Cox transformation of ߪ௧. A positive (negative) value of ߛଵ	 means that past 
negative (positive) shocks have a deeper impact on current conditional volatility than past 
positive shocks (Haung and Lin, 2004).  A significant advantage of the APGARCH structure 
is its flexibility to nest both conditional variance and conditional standard deviations of both 
Bollerslev (1986) and Taylor (1986), respectively (Ane՛, 2005). 

The abovementioned APGARCH(1,1) model nests some other ARCH  specifications as special 
cases. For example, if 2=ߜ and ߛଵ ൌ 0, then we obtain the standard GARCH(1,1) of Bollerslev 
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(1986)7. The standard GARCH(1,1), expressed in Eq. 6, model the second moment as a 
function of lagged squared residuals (representing news about volatility from the previous 
period) and past variance (representing the effect of old news on volatility). The persistence of 
shocks to volatility depends on the sum of ARCH and GARCH coefficients (i.e.,	߱ଵ ൅   .(ଵߚ

௧ଶߪ ൌ ߱଴ ൅ ߱ଵߝ௧ିଵ
ଶ ൅ ௧ିଵߪ	ଵߚ

ଶ 			        (6) 

߱଴ ൒ 0,	 ߱ଵ ൒ 0, ଵߚ ൒ 0 and   ߱ଵ ൅ ଵߚ ൏ 0 

Similarly, if ߜ ൌ 1  and ߛଵ ൌ 0 , then we obtain Taylor’s (1986) model, as shown in Eq.7, the 
model the conditional standard deviation to lagged absolute residuals and past standard 
deviation. 

௧ߪ ൌ ߱଴ ൅ ߱ଵ|ߝ௧ିଵ| ൅          (7)	௧ିଵߪଵߚ

Parameters are estimated by employing the maximum likelihood procedure [i.e. Marquardt 
(1963)].  

2.2 Value-at-Risk  

The value at risk (VaR) could be defined as an amount of loss (measured in terms of £, $, €, 
etc.) on a portfolio or index with a given probability over a fixed number of days (Hung et.al, 
2008). When measuring its risk, a portfolio can be considered as a multivariate system of 
individual returns or as a univariate return of the whole portfolio. In the current paper, we focus 
on the estimation of the VaR of a univariate series of returns. VaR has the remarkable property 
of expressing risk in only one figure and is the estimated loss of an asset, index, or portfolio, 
within a given period will only be exceeded by a certain small probability. Thus, the one day 
 VaR shows the negative return that will not be exceeded within this day with a probability % ߙ
of   1 െ  . ߙ

ܲሾܴ௧ ൏ ܸܴܽ௧	|ܨ௧ሿ ൌ  (8)         			ߙ

Where ܴ௧ is return series of an index or portfolio, ܨ௧ denotes the information set available at 
time t. The value at risk forecast for day t+1 conditional on the information set ܨ௧ can be thus 
expressed as in Eq. 9. 

ܸܴܽ௧ାଵ|௧ሺߙሻ ൌ ௧ାଵ|௧ߤ ൅ ܼఈ	ߪ௧ାଵ|௧	        (9) 

Where ߤ௧ାଵ|௧ and ߪ௧ାଵ|௧ are the one-day-ahead mean and conditional standard deviation 
forecasts by the employed GARCH models and ܼఈ	represents the left quantile of the employed 
distribution at ߙ%. In the current study, all models are tested with 5% level of significance. 
The performance of VaR models (and implicitly of volatility models) will be assessed from 
two different perspectives (Ane՛, 2006): accuracy and efficiency. The statistical adequacy will 
be tested based on backtesting measures of Kupiec (1995) and Christoffersen (1998) whereas 
the efficiency of different models will be compared via the binary and regulatory loss functions 
(Sarma et al. 2003). 

2.2.1 Likelihood Ratio test for Unconditional Coverage: ࡯ࢁࡾࡸ 
To assess the performance of competing models, we compute the failure rate,݂, which is the 
proportion of times the realized returns ܴ௧ are below (i.e. more negative than) the forecasted 
VaR, ܸܴܽ௧ାଵ|௧ሺߙሻ. If the VaR model is correctly specified, then ݂ should be equal to the pre-
specified VaR level ߙ. The computation of ݂ requires defining a sequence of ones (hits of the 
VaR ) and zeros (no hits of the VaR). It is possible to test ܪ଴: ݂ ൌ :଴ܪ against  ߙ ݂ ്  by  ߙ
first observing that the number of hits follows a binomial distribution ܶ~ሺܰ,  ሻ. Theߙ

                                                            
7 Bollerslev (1986) extends the autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982) to generalized ARCH (GARCH) 
where volatility is dependent on return shocks and past volatilities.  



6 
 

appropriate likelihood ratio test statistic of Kupiec (1995), known as the unconditional test and 
denoted as ܴܮ௎஼ , equals 

௎஼ܴܮ ൌ 2 ∗ ݈݊ ൤ቀ1 െ
்

ே
ቁ
ேି்

	ቀ
்

ே
ቁ
்
൨ െ 2 ∗ ݈݊ሾሺ1 െ       (11)	ሻ்ሿߙሺ	ሻேି்ߙ

Under the null hypothesis, the ܴܮ௎஼  statistic is asymptotically distributed as ߯ଶ	ሺ1ሻ. The test 
can be rejected a model for both too high or too low hit rates.  

2.2.2 LR test for Conditional Coverage: ࡯࡯ࡾࡸ 
The ܴܮ௎஼ is test is an unconditional test since it simply counts the number of hits over the 
entire period examined. The ܴܮ஼஼ test proposed by Christoffersen (1998) is used to test the 
conditional coverage. If the VaR estimates ܸܴܽ௧ାଵ|௧ሺߙሻ correctly incorporate the variance 
dynamics, the series of ܫ௧ must both exhibit correct unconditional coverage and serial 
independence. The  ܴܮ஼஼ test is a joint test of these two properties. The ܴܮ஼஼ test statistic, 
which is asymptotically distributed as ߯ଶ	ሺ2ሻ is defined by 

௎஼ܴܮ ൌ 2 ∗ ݈݊ሾሺ1 െ ሺ1	଴ଵሻ௡బభߨሺ	଴ଵሻ௡బబߨ െ ሿ	ଵଵሻ௡భభߨሺ			ଵଵሻ௡భబߨ െ 2 ∗ ݈݊ሾሺ1 െ    	ሻ்ሿሻߙሺ	ሻேି்ߙ

Where ݊௜௝ is the number of observation with the value i followed by j for i, j=0,1, while ߨ௜௝ ൌ
݊௜௝ ∑ ݊௜௝௝⁄  are the corresponding probabilities. The value i,j=1 indicates that a violation of the 
VaR level has occurred while i,j=0 denotes the opposite. The advantage of ܴܮ஼஼ test is that it 
can reject a model that can generates either too many or two few clustered hits. 

2.2.3 Binary and Regulatory Loss Functions 
The loss function evaluation method suggested by Lopez (1998) assign to each VaR estimate 
a numerical score that provides a measure of relative importance. The loss functions are defined 
with a negative orientation since they give higher scores when failures take place. VaR models 
are assessed by comparing the values of the loss function. A model which minimises the loss 
is preferred over the other models (Sarma et al., 2003). In the current study, we use two loss 
functions. The binary loss function (BLF) is a reflection of the ܴܮ௎஼ test and give a penalty of 
1 to each violation of the VaR value. The BLF could be expressed as follows: 

௧ାଵܨܮܤ ൌ ൜
1								if	ܴ௧ 	൏ ܸܴܽ௧ାଵ|௧ሺߙሻ

0									if				ܴ௧ 	൒ ܸܴܽ௧ାଵ|௧ሺߙሻ												
 

An adequate VaR model should take in its account not only the count of violations but also the 
magnitude of it. The regulatory (or quadratic) loss function (RLF)8 , shown below, includes a 
quadratic term to impose more penalty on big failures compared to the small failures (Sarama 
et al. 2003). A model is preferred to other candidate models if it yields a lower total loss value 
that is defined as the sum of these penalty scores ∑ܴܨܮ௧ାଵ .The model that does not generate 
any violation is deemed the most adequate since the total loss function equals zero (Xekalaki  
and Degiannakis, 2010). 

௧ାଵܨܮܴ ൌ ቊ൫ܴ௧ െ ܸܴܽ௧ାଵ|௧ሺߙሻ	൯
ଶ
										if	ܴ௧ 	൏ ܸܴܽ௧ାଵ|௧ሺߙሻ

0																																							if				ܴ௧ 	൒ ܸܴܽ௧ାଵ|௧ሺߙሻ							
 

3.  Data and Empirical Results 

3.1 Data and preliminary analysis 

The data consists of 2520 daily observations of the MSCI-Turkey equity index from the period 
2nd January 2006 to 28th August 2015 sourced from DataStream. This Index is designed to 
measure the performance of the large and mid-cap firms of the Turkish market. It covers about 
85% of the equity universe in Turkey. Returns are constructed as the first difference of natural 

                                                            
8 The RLF is similar to the magnitude loss function of Lopez (1998) 
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logarithm of share prices times 100. Table 1 displays the descriptive statistics for the whole 
sample period. The mean return is insignificantly different from zero. Return series exhibits 
significant negative skewness and excess kurtosis. The Jarque –Bera (J-B) statistic confirms 
that the return series deviates from normality as the null hypothesis of unconditional normality 
is rejected beyond the 1% level of significance.  To test the hypothesis of independence, Ljung-
Box Q statistic for lag 10 is estimated for the returns and squared returns, ܤܮ	ܳሺଵ଴ሻ and 
 ܳሺଵ଴ሻ respectively; and also reported in Table 1. From these test statistics, the null of no	ଶܤܮ
serial correlation between returns could not be rejected, however, it has to be rejected for the 
squared returns. Given that the squared reruns are serially correlated, GARCH family models 
would be appropriate to capture the dynamics of variance. Before modelling return series using 
GARCH models, we test whether or it is a stationary process using the ADF (Dickey and Fuller, 
1981) and KPSS (Kwiatkoski et.al, 1992) unit root tests. According to the ADF test, the null 
hypothesis that the return series contains a unit root has to be rejected at the traditional levels 
of significance. The KPSS confirms that conclusion since the null hypothesis that the return 
series is stationary cannot be rejected at conventional levels of significance.  Accordingly, 
returns in their levels could be used in the following analysis9. 

3.2 Results of volatility models using the entire sample 

Maximum likelihood estimates of the parameters of models under consideration are obtained 
by numerical maximization of the log-likelihood function, employing the Marquardt (1963) 
algorithm. Table 2 introduces the results of parameter estimates of the two models under the 
three employed conditional densities for the whole sample period. When adopting the Taylor 
GARCH(1,1) model to the entire dataset, it is found unjustified since convergence could not 
be achieved. For the two models under the three conditional densities, the mean equation that 
includes only an intercept is found sufficient to capture the dynamics of the mean equation as 
reflected by the insignificant Ljung-Box Q statistic up to lag  10, ܤܮ	ܳሺଵ଴ሻ,	for standardised 
residuals. The intercept is found to be significantly different from zero for GARCH(1,1) under 
the three distributions but insignificant under the APGARCH(1,1) model under the all 
employed densities.  

Concerning the variance equation under the three conditional distributions, all coefficients are 
found to be significantly different from zero at the 1% level of significance. Since the 
asymmetry parameter 1  of APGARCH, under the three conditional densities, has a positive 
sign and is very significant, this indicates the presence of leverage effect implying a higher 
response to past negative shocks. The estimated asymmetry parameter is roughly four times 
higher than the estimated ARCH parameter. Thus, negative innovations at day t increase the 
volatility at day t+1 by around four times as a positive innovation of the same magnitude. The 
autoregressive effect in volatility is very strong. The GARCH parameter, 1 , ranges between a 
minimum of 0.8807 for the APGARCH(1,1)-GED model and a maximum of 0.9112 for the 
GARCH(1,1)-t model, suggesting that the volatility has a strong memory effect. The power 
term parameter ߜ equals 1.811, 1.829, and 1.796 for the APGARCH(1,1)-n, APGARCH(1,1)-
t and APGARCH(1,1)-ged models respectively.  

The estimated degrees of freedom parameters, v, of the conditional student t distribution which 
equal 6.663 and 6.890 for GARCH(1,1) and the APGARCH(1,1) models respectively is 
significant beyond 1% level of significance. Additionally, the tail thickness parameter,  , of 
GED distribution that equal 1.324  and 1.344 for GARCH(1,1) and the APGARCH(1,1) models 
respectively is also significant beyond 1% level of significance. This indicates that the 

                                                            
9 Results of the tests above are not reported due to limited space. However, they are available upon request from the authors. 
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standardized residuals are not normally distributed even after taking GARCH effects into 
consideration. 

Model diagnostics [Ljung-Box Q statistic for lag 10 is estimated for the standardised residuals 
and squared standardized residuals, ܤܮ	ܳሺଵ଴ሻ and ܤܮଶ	ܳሺଵ଴ሻ respectively, and Lagrange 
Multiplier to test for the presence of ARCH effects in the residuals (LM-ARCH(10))] are 
presented in the bottom of Table 2. These tests indicate that standardized residuals and their 
squared counterparts from the employed models, irrespective of the conditional density used, 
are free from serial correlation up to lag 10 and that ARCH effects are not present in 
standardized residuals squared. Accordingly, both mean and variance equations are said to be 
well specified.  

According to the log-likelihood statistic, APGARCH(1,1) model with GED innovations, 
followed by the APGARCH(1,1) model with Student t distribution, is considered the best 
model to fit the data. On the other hand, GARCH(1,1) with a normal distribution is ranked the 
last.  This is not surprisingly since models with more parameters always maximize the 
likelihood function. Nevertheless, when the number of parameters is given consideration, as in 
the AIC and BIC, the conclusion above is still valid. However, the superiority of one model 
cannot be assessed by using goodness-of-fit tests. The GARCH (1,1) model under different 
densities is found to be stable since the joint Nyblom  test statistic10, joint Lେ , is found less 
than critical one at 5% for all return series. However, for the APGARCH(1,1) model under the 
employed densities, the null parameter stability has to be rejected at 5% level of significance. 
Such conclusion justifies estimating volatility models using rolling window procedure. 

Thus, the next subsection will deal with the model selection according to its out-of-sample 
criteria. In other words, models will be evaluated for their ability to generate the most accurate 
one-day-ahead VaR at 95% level of confidence. We test whether ߜ  is significantly differ from 
unity (Taylor (1986) model) and two (Bollerselv (1986) model). According to the likelihood 
ratio statistics, the parameter ߜ is found to be significantly different from one but not from 
two11. Giot and Laurent (2003) found that δ is between 1.052 and 1.793 and mostly 
significantly different from 2. For five of the six series where δ is found insignificantly different 
from 1, they concluded that, instead of modelling the conditional variance (GARCH), it is more 
relevant to model the conditional standard deviation. The likelihood ratio test confirmed that 
the power transformation parameter for the entire data set is significantly different from unity. 
Hence, the Taylor GARCH(1,1) seems to be inapplicable to the daily MSCI-Turkey equity 
index data during the study period. 

3.3 Results of volatility models using rolling window procedure 

Using a constant rolling sample of 1800, we generate 720 one-step-ahead volatility forecasts 
using the above-observed series of the MSCI-Turkey equity index. We use the first 1800 
observations to estimate the parameters of the two models under the three employed 
distributions. The estimation window is then moved forward by one day, and the model of 
concern is re-estimated. This process keeps running forward day by day until the end of the 
entire sample. The rolling estimation procedure allows for tracking the evolution of estimated 
parameters. Degiannakis et.al (2008) found that the estimated parameters of the EGARCH 
model change over time, however; the model does not lose its ability to forecast accurately 
one-day-ahead volatility. Xekalaki and Degiannakis (2010) asserted the time-varying 
parameters reflect the fact that structural properties and trading behaviour alter over time.  

                                                            
10 The joint Lେ statistic tests the null that the entire vector of parameters is stable against the alternative that the entire vector may be unstable 
(i.e. following a martingale process). As argued by Nyblom (1989), this encompasses the case of one or more structural breaks.  The test 
statistic has an asymptotic distribution which depends only on the number of estimated parameters. Nyblom (1989) and Hansen (1990) 
tabulated this distribution. It is worth mentioning that the test statistic is robust for heteroscedasticity.   
11 To save space, results are not shown. However, they are available upon request from the authors. 
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Figure 1 in Appendix depicts the rolling power transformation parameter under the three 
employed distributions12. Each figure plots the 95% confidence interval of each parameter. 
Confidence intervals are constructed employing the standard errors of the parameters estimated 
using the full data sample. Table 3 introduces the percentages of the rolling-sampled 
estimations which are outside the 95% confidence interval.  The rolling estimates of power 
transformation parameter (ߜ ) are outside the 95% confidence interval of the full-sampled (ߜ ) 
in the 48.88%, 17.77%, and 23.19% of the cases under the normal, student t and GED 
distributions respectively. In many cases, we found that the rolled-over parameter of power 
transformation differ significantly from one and from two, implying that the volatility 
dynamics may switch from variance specification to another. From table (3), we conclude that 
100% of degrees of freedom of Student t distribution and the tail thickness parameter of GED 
distribution are found to lie inside the 95% confidence interval. This implies that the 
leptokurtocity of MSCI-Turkey equity returns does not change over time during the study 
period. In contrast, Ane՛ (2006) found that the degrees of freedom of the Student t change over 
time and, hence, the fat-tailedness of the distribution of the innovations to be time-variant. The 
reduction of kurtosis is approximately 30% for the employed Japanese indexes regardless the 
variance equation specification. 

Table 4 introduces the mean and the standard deviation for the power transformation parameter 
 .obtained by the roll-over estimation procedure of a fixed window size of 1800 observations ߜ
Figure 2 displays the empirical distribution of the power transformation parameter under the 
three distributions. The densities are obtained by the kernel method. It is clear that the empirical 
distribution of the power transformation parameter ߜ shows clear bimodality. Such conclusion 
conforms to that of Ane՛(2006) regarding the Japanese financial stock data. 

3.4 Implication for value-at-risk 

To compare the alternative volatility models from a practical point of view, we use the one-
day-ahead volatility forecasts to compute the one-step-ahead 5 percent VaR of a ₺131000000 
portfolio. Table 5 reports the results of out-of-sample VaR models using the 95% level of 
confidence. The percentage of negative returns smaller than the one-step-ahead VaR is not 
significantly differed from 5% for all estimated models. Thus, these models under different 
conditional densities pass the unconditional coverage test of correct failure rate. In addition, 
hits are found to be serially independent (i.e. they do not cluster). Hence, all models pass the 
conditional coverage test of correct failure rates and independence. Accordingly, all models 
are said to be statistically adequate in forecasting one-step-ahead VaR.  Although the binary 
loss functions (BLF), expressed as the percentage of a number of hits, are never statistically 
different from 5%, the GARCH(1,1)-t and APGARCH(1,1)-t models are a little more 
conservative with a failure rate below the 5% target.  According to the regulatory loss functions 
(RLF) taking into account not the number of failures but also their magnitudes, asymmetry, 
and fat tails seem to be important in modelling VaR since the APGARCH(1,1)-t  is found to 
be the most efficient amongst its other competitors. The GARCH(1,1)-t is considered to be the 
second best in terms of efficiency. Hence, the conservative models, with conditional Student t 
density, seem to perform better than other competitors. On the other hand, the GARCH(1,1) 
with conditional normal innovations is considered to be the least efficient model in forecasting 
one-day-ahead VaR with the largest regulatory loss function. 

The VaR statistics (mean, standard deviation, minimum, and maximum) in the table reflect 
losses in thousands of Turkish Lira on a portfolio of 1 million Turkish Lira. With an initial 
investment of ₺1 million, an investor loses, on average, about ₺ 29506.4, ₺29049.34, 
₺25489.81, ₺25303.5, ₺24996.5, and ₺24688.12 when employing APGARCH(1,1)-t, 

                                                            
12 To save space, figures of other rolled parameters are not included. However, they are available upon request from the authors. 
13 ₺ stands for Turkish Lira 
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GARCH(1,1)-t, APGARCH(1,1)-GED, APGARCH(1,1)-n, GARCH(1,1)-GED, and 
GARCH(1,1)-n, respectively. The maximum amounts an investor loses are ₺ 81024.7, 
₺68802.3, ₺72850.1, ₺74140.4, ₺60819.7, and ₺62214.2 using the models above respectively. 
As mentioned earlier, the APGARCH(1,1)-t, GARCH(1,1)-t are ranked the best and the second 
best in terms of quadratic loss function that takes into account both the number and size of hits. 
Panels A and B of Figure 1 plot the one-day-ahead VaR predictions and the realised returns, 
measured in terms of Turkish Lira, for GARCH and APGARCH models respectively. It is clear 
that VaR prediction generated by the employed models under different densities react to 
increase in turmoil periods and decrease in tranquil times. From Figure (1), with 95% 
confidence the APGARCH(1,1)-t, GARCH(1,1)-t predict that portfolio loss will be no more 
than ₺ 33134.29 and ₺ 28990  in 3rd, June 2013. However, the actual loss (the negative returns) 
was ₺107612.1. Thus, the magnitude of the hit to the predictions of these two models is 
₺74477.81 and ₺78622.1 respectively. The GARCH(1,1) performs the worst with an exception 
of ₺82133.2. On 27th of February, 2015, the realized returns were higher than the VaR implied 
by all models except those with student t distribution [for example, the VaR was exceeded by 
₺1332.4, ₺1064.4, and ₺7113.1 for normal-GARCH, normal-APGARCH, and GED-
APGARCH, respectively]. Thus, it seems that volatility models with student t distribution 
introduce better hedge for market risk in the ISE. 

4. Conclusion and Areas for Further Research 
We investigate whether asymmetry and fat tails matter when modelling VaR for ISE. Thus, we 
employ the symmetric GARCH(1,1) model and Asymmetric Power GARCH(1,1) model, using 
normal distribution, the Student t, and the GED to account for leptokurtosis. Additionally, we 
examine if the estimated parameters are time-varying. We compare the forecasting 
performance of GARCH(1,1) and APGARCH(1,1) models using three different distributions, 
normal and Student t and GED, in the context of value at risk for ISE. We employ daily data 
of the MSCI-Turkey Equity Index for the period stretching from 2nd January 2006 to 28th 
August 2015. The two models under the three distribution were executed using the entire 
sample period, and the power transformation parameter was found significantly different from 
one but not from two. The employed models are evaluated through their ability to produce the 
most accurate one-day-ahead VaR at 95% level of confidence. Consequently, we used a rolling 
sample of constant size of 1800 to generate 720 one-step- ahead volatility forecasts to provide 
the one-step-head variance predictions required to create the one-step-ahead VaR. Employing 
the rolling window procedure to re-estimate the model parameters each trading day allowed to 
examine if the estimated parameters of the variance equation change over time. When we tested 
the stability of employed models, the joint Nyblom test statistic indicated the stability of 
GARCH(1,1) specifications under the different densities while the APGARCH (1,1) model is 
found unstable under the different distribution. This evidence was supported by running the 
rolling window estimation as the power transformation parameter (ߜ ) are outside the 95% 
confidence interval of the full-sampled (ߜ ) in the 48.88%, 17.77%, and 23.19% of the cases 
under the normal, student t and GED distributions respectively. 

To check their statistical precision of the risk models, we first filtered it by back-testing 
measures of Kupiec (1995) and Christoffersen (1998). This is done to examine whether the 
mean number of violations is not statistically significantly different from that expected and 
whether these violations are independently distributed. The two models using the different 
three distributions passed the tests above of statistical adequacy. Then these adequate models 
are assessed using binary and loss function.  Though the binary loss functions (BLF), are never 
statistically different from 5%, the GARCH(1,1)-t and APGARCH(1,1)-t models are a little 
more conservative with a failure rate below the 5% target. On the other hand,  the regulatory 
loss functions that consider both the number of failures and their magnitudes, suggest that 
APGARCH(1,1)-t to be the most efficient amongst its other competitors. This implies that 
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asymmetry and fat tails are important in modelling the VaR. Further, The GARCH(1,1)-t is 
selected as the second best with respect to efficiency indicating that the conservative models, 
with conditional Student t density, are superior to other employed models. Finally, the 
GARCH(1,1) with normally distributed errors is regarded as the worst model in forecasting 
one-day-ahead VaR with the largest regulatory loss function. Given the superior of models 
with student t distribution, it seems that the distributional assumption plays a major role in 
forecasting volatility and predicting potential losses on the Istanbul Stock Exchange, and thus, 
they can be employed for a better hedge against market risk in the ISE.   

Further areas of research include applying the methodology of Doornik and Ooms (2005) in 
detecting outliers in GARCH models since the presence of outliers affect forecasted volatility 
and, hence, the forecasted VaR. They recommend adopting their test since it can serve as a 
misspecification test. In addition, they argue that the detected outliers can complement value-
at-risk estimations because, in large samples, the distribution of outliers is informative in itself.  
Given the integration of the ISE with other international fanatical markets (e.g. the U.S one), 
another area for further research would be estimating VaR for the ISE using multivariate 
GARCH models since the risk of one asset depends dynamically on its past risk as well as on 
the past risk of other assets (McAleer and da Veiga, 2008). Moreover, Thomas (2003) proposed 
a new multi-fractal model that account for long-memory effects in financial volatility. He found 
that comparing the multi-fractal forecasts with those derived from GARCH and FIGARCH 
models yields results in favour of the new model. Hence, a comparison of the performance of 
this new specification with other GARCH competitors in forecasting the VaR would be another 
area for further research.  
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Figure 1: MSCI-Turkey Returns and One-Step-Ahead VaR at 95% Level of Confidence 

Panel A: VaR of GARCH(1,1) under employed 
distributions 

Panel B: VaR of APGARCH(1,1) under employed 
distributions 
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Table 1: Descriptive Statistics of Daily Returns of MSCI-Turkey for the Whole Sample 
Period 

No. of Obs. Mean(1) 
t-statistic 

Standard 
deviation 

Skewness(2)

t-statistic 
Kurtosis(3)

t-statistic 
Minimum 
Maximum 

J-B statistic 
[p-value] 

LB Q(10) 

[p-value] 
LB2 Q(10) 

[p-value] 
2519 0.0159 

(1.752) 
1.808 -0.142 

(-2.909)* 
6.485 

(35.706)* 
-10.761: 
12.722 

1263.24 
[0.000]* 

15.271 
[0.122] 

384.95 
[0.000]* 

Notes: (1) t-statistic, between parentheses, is calculated as t = mean return/( standard deviation * square root of the sample size). (2) t-statistic, 
between parentheses, is calculated as )(/)0( SSESt  , where S is the value of skewness coefficient, 0 is the value of skewness coefficient 

for a normal distribution and )( SSE  is the standard error of the estimated skewness coefficient which calculated as the square root of 6/n, 

where n is the number of observations. (3) t-statistic, between parentheses, is calculated as )(/)3( KSEKt  , where K is the value of 

kurtosis coefficient, 3 is the value of kurtosis coefficient for a normal distribution, and )(KSE  is the standard error of the estimated kurtosis 

coefficient that calculated as the square root of 24/n, where n is the number of observations. (4) * indicate that the null hypothesis should be 
rejected at 1% level of significance or less.   
Source: Authors’ calculations. 

 
 
 
 

 
Table 2: Estimates Results of Alternative Volatility Models: The Whole Sample Period 

Parameters GARCH(1,1) APGARCH(1,1) 
normal Student t GED normal Student t GED 

0
  

0.0897 
 [0.002] 

0.0795 
 [0.007] 

0.0659 
[0.020] 

0.052 
[0.08] 

0.055 
[0.062] 

0.045 
[0.111] 

0  
0.0847 
[0.001] 

0.0618 
[0.000] 

0.0753 
[0.000] 

0.097 
 [0.000] 

0.0924 
[0.000] 

0.0996 
[0.000] 

1  0.0873 
 [0.000] 

0.0709 
[0.000] 

0.0813 
[0.000] 

0.0813 
[0.000] 

0.0759 
[0.000] 

0.0831 
[0.000] 

1  
- - - 0.3415 

[0.003] 
0.3578 

[0.0000] 
0.3577 
[0.000] 

1  
0.8880 
 [0.000] 

0.9112 
 [0.000] 

0.8996 
[0.000] 

0.8828 
[0.000] 

0.8897 
 [0.000] 

0.8807 
[0.000] 

 1.811    ߜ
[0.000] 

1.829 
[0.000] 

1.796 
[.000] 


 

- 6.633 
[0.000] 

- - 6.890 
[0.000] 

- 


 

- 
 

- 1324 
[0.000] 

-
 

- 1.344 
[0.000] 

LB Q(10)  12.315 
[0.265] 

12.802 
[0.235] 

12.584 
[0.248] 

10.676 
[0.265] 

10.702 
[0.381] 

10.650 
[0.385] 

LB2 Q(10) 5.411 
[0.862] 

7.782 
[0.650] 

5.829 
[0.829] 

4.873 
[0.899] 

5.055 
[0.887] 

5.247 
[0.874] 

LM-ARCH(10)   
 

5.574 
[0.849] 

7.975 
[0.631] 

6.009 
[0.814] 

5.328 
[0.868] 

5.685 
[0.840] 

5.403 
[0.862] 

஼ܮ	ݐ݊݅݋ܬ  
5% critical value 

0.7782 
[1.24] 

1.033      [1.47] 1.116 
[1.47] 

1.70 
[1.68] 

2.09 
      [1.9] 

2.09 
[1.9] 

Log-Likelihood -4871.367 -4817.781 -4815.033        -4851.54 -4804.768 -4801.118 
AIC 3.870 3.829 3.826 3.856 3.820 3.817 
BIC 3.880 3.840 3.838 3.870 3.836 3.823 

Notes (1) p-values are in brackets below. (2) Coefficients in bold are significantly different from zero. (3) For models based on normal 
distribution, standard errors are calculated using the robust method of Bollerslev and Wooldridge (1992). (4) LB Q(10) and LB2 Q(10) are the 
Box-Pierce portmanteau statistic for the first ten autocorrelations of standardised residuals and squared standardised residuals, respectively. 
(5) Joint Lେ Indicates the test statistic of Nyblom(1989) and modified by Hansen (1990), which is asymptotically robust to heteroscedasticity, 
tests the null of the constancy of the entire vector of estimated parameter against an alternative that the entire vector may be unstable. The 5% 
critical values of the test statistic, which depends on upon the number of estimated parameters, are reported in square parentheses beneath the 
estimated test statistic. (6) AIC and BIC stand for the Akaike information criterion Bayesian information criterion. 
Source: Authors’ calculations 
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Table 3: Percentage of Rolling-Sampled Estimated Parameters That Lie Outside the 
95% Confidence Interval  

Parameter GARCH(1,1) APGARCH(1,1,1) 
normal Student t GED normal Student t GED 

0
  

0 0 0 0 0 0 

0  
0 0 0 4.44% 0 0.55% 

1  0 0.83% 0 5.55% 0 1.80% 

1  
- - - 2.63% 0 0 

1  
0 0 0 5.97% 0 0.13 

 23.19% 17.77% 48.88% - - - ߜ
 - 0 - - 0 - 

 - - 0 - - 0 

Source: Authors’ calculations  

 
 
 

Table 4: Statistics of the Rolling Power Transformation Parameter 
 APGARCH(1,1)-n APGARCH(1,1)-t APGARCH(1,1)-GED 
Mean 2.231 2.182 2.135 
Standard deviation 0.335 0.391 0.368 
Minimum 1.353 1.414 1.366 
Maximum 3.205 3.193 3.144 

Source: Authors’ calculations. 

 
 

 
Table 5: Testing the Models With Out-of-Sample VaR Statistics (95% level of confidence) 
VaRs in ₺   

 GARCH (1,1) APGARCH(1,1) 
 Normal Student t GED Normal Student t GED 
VaR mean 24688.12 29049.34 24996.5 25303.5 29506.4 25489.81 
VaR std. 74436.6 8384.6 7337.5 8224.68 9332.1 8144.93 
VaR  max 62214.2 68802.3 60819.7 74140.4 81024.7 72850.1 
VaR  min 14833.9 1754.7 15404.6 14446 16915.5 14884.1 
Expected Hits 36 36 36 36 36 36
Actual Hits 37 25 36 37 25 36
 *௎஼ 0.0289ܴܮ

[0.864] 
3.943** 
[0.047] 

0* 
[1] 

0.0289* 
[0.864] 

3.943** 
[0.047] 

0* 
[1] 

 ஼஼ܴܮ
 

0.596* 
[0.742] 

3.963* 
[0.137] 

0.465* 
[0.792] 

0.596* 
[0.742] 

3.963* 
[0.137] 

0.465* 
[0.792] 

BLF% 0.0513 0.034 0.050 0.0513 0.034 0.050 
BLF% 121.525 93.525 119.556 111.573 83.648 108.980 
Rank 6 2 5 4 1 3 

Notes: (1) p-values of test statistics are in brackets beneath them. (2) * indicates that the null has to be rejected at conventional levels of 
significance. (3) ** indicates that the null has to be rejected at 1% level of significance. (4) Models are ranked according to regulatory loss 
function (RLF) where the model with the lowest value is the best one. (5) VaR mean, VaR standard deviation (VaR std), maximum VaR (VaR 
max), and minmum VaR (VaR min) are expressed in terms of Turkish Lira for ₺ 1Million. 
Source: Authors’ calculations 
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Appendix 

Figure 1: The 720 estimates of the power transformation power parameters of the APGARCH(1,1,1) model on the basis of a rolling sample 
of 1800 observations on the MSCI-Turkey equity index 

Panel A:ࢾሺ࢚ሻ under the APGARCH(1,1)-n  model Panel B:ࢾሺ࢚ሻ under the  the APGARCH(1,1)-t model Panel F:઼ሺܜሻ the APGARCH(1,1)-GED model 
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Figure 2: Empirical Distribution of The Power Transformation ࢾ 

Panel A: ߜ of APGARCH(1,1)-n Panel B: ߜ of APGARCH(1,1)-t Panel A: ߜ of APGARCH(1,1)-GED 
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Source: Authors’ calculation.  
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