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Abstract  

Technical and scale efficiencies have been widely studied in agricultural production 
literature, but many of the inputs used can impact the environment. Environmental impacts 
can take the form of undesirable output, a non-discretionary production input or, as has been 
the case in many studies, a conventional input. In this paper, we develop a DEA (Data 
Envelopment Analysis) model with water salinity as a non-discretionary input and estimate a 
model of irrigation water demand function based on the role of water in the farm production 
function. We model production technology by distinguishing six inputs (water, labor, 
phosphate, farmyard manure, farm size and water salinity) and four outputs (date production, 
vegetable production, cereal production, and fruit production). The adjusted-DEA model is 
applied on a transversal data of 138 water users associations farms.  

On average, the technical efficiency for our sample observations is 0.63, which means that, 
on average, the farms can produce the same level of outputs with only sixty three per cent of 
the inputs if they are operating at the input frontier. Moreover, we also observe that there is 
wide variation in the measure of technical efficiency across farms. Spearman coefficient of 
rank correlation is used to test whether the farms' performance rankings, before and after 
accounting for water salinity, are significantly different.  We find that accounting for 
variations in water salinity does not significantly bias the relative performance of the farms. 
The mean of scale efficiency levels is about 0.89. The results also show that 70% of farms are 
operating at below the optimal scale of production and 50% of oases farmers could improve 
SE (first mention, no full term) if they increased scale in terms of farm size.  

The shadow prices of irrigation water derived from the adjusted-DEA model are positive, 
reflecting that water is a normal input in the production process. The estimation of a model of 
irrigation water demand function enables us to derive the shadow price elasticities of the 
inputs. It should be noted that the price elasticity of water is significant and quite high. Thus, 
the high responsiveness of water demand to price suggests that pricing policies can be a 
potential instrument for water conservation.  

 

 ملخص

 بالنسبة مياه الري تقدير إجراءات قياسات الكفاءة و التقنية ومرونة سعر فييكمن الهدف الرئيسي من هذا البحث 
يتم تقدير قياسات الكفاءة والتقنية غير المقيدة بتنوع ملوحة المياه من . لمزارع الواحات في جنوب غرب تونس

تقديري في نموذج تحليل حافظة البيانات الموجه نحو  دخال غيرخلال تحديد ملوحة الماء باعتبارها عنصر إ
 –ب وتقدر مرونة سعر مياه الري  ويسمح .على التوالي% 89و  % 63وتقدر قيمها بـحوالي . البيانات المدرجة به

 للقيام ويتضح أن هذه المرونة على قدر من الأهمية وبالتالي فإن القيام بتسعير المياه قد يشكل وسيلة هامة. 0.44
وتشير النتائج الخاصة بمرونة الأسعار الصورية فيما يتعلق بمدخلات . بإدارة الموارد المائية بشكل أفضل

 . إلى أن هذه المدخلات مكملة للمياه،المزرعة غير المتعلقة بالمياه، مثل الأسمدة والعمالة
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1. Introduction  

There are several reasons for analyzing irrigation water demand in the Middle East and North 
Africa (MENA) and especially in Tunisia. MENA region is characterized by scarce 
groundwater resources, low and highly variable rainfall. Most of the significant water 
resources are shared by more than one country. These historic characteristics become crucial 
problems today because the region is experiencing increased population pressures, improved 
living standards, growing demands for food, urbanization and industrialization that result in 
the overexploitation of renewable fresh water and a degradation in its quality. Most MENA 
countries are classified as water stressed and their consumption already exceeds their annual 
renewable supplies. By 2050, nearly one billion people living in MENA will have less than 
650 cubic meter of water per person (Johansson et al., 2002). In these circumstances, Water 
Demand Management would be a viable option to complement supply management for 
alleviating water stress problems.  

Our paper will analyze this rationale in the context of Tunisia. Like many other developing 
countries, and especially MENA countries, Tunisia uses a high percentage of its water 
resources (80%) for agriculture. This paper contributes to the literature on irrigation-related 
water use by estimating the irrigation water demand for a transversal data of 138 water user 
associations farms. The original data comes from a survey conducted with the help of the 
Tunisian Ministry of Agriculture and Hydraulic Resources and a team of the ETH (Swiss 
Federal Institute of Technology) in 2002. 

The main objective of this research is to estimate the technical and scale efficiency measures 
and irrigation water price elasticity for oases farms in the South West of Tunisia. Technical 
and scale efficiencies unconfounded by water salinity variation are estimated by specifying 
water salinity as a non-discretionary input in an input-oriented adjusted-DEA model which is 
different from a conventional DEA model.1 A farm’s performance is rated according to its 
distance from the efficient frontier which is created by DEA from data. The DEA distance 
function allows the generation of shadow prices of irrigation water which are used to estimate 
the irrigation water price elasticity. 

We model production technology by distinguishing six inputs (water, labor, phosphate, 
farmyard manure, farm size and water salinity) and four outputs (date production, vegetable 
production, cereal production, and fruit production). We are especially interested in analyzing 
the following issues: 

 What are the technical and scale efficiency measures of farms unconfounded by water 
salinity variation? 

 How changes in model input specification alter the relative performance of farms? 
 What can be the per unit shadow price of irrigation use of water? 
 What can be said about the price elasticity of irrigation water demand in the South West 

of Tunisia? 
A farm’s production technology could be modeled in different ways: the production function, 
the profit function or the cost function. Then Hotelling’s Theorem and Shephard’s Lemma 
allow one to derive compatible input demands and outputs with optimized behavior. Our 
work is based on a nonparametric approach which uses an input distance function to measure 
technology and model the production process. The distance functions completely describe 
multi-input/ multi-output production technologies. Shephard (1970) and Färe and Primont 

                                                           
1 Normally, our model reports higher levels of technical efficiency because, as is well known, adding variables 
to the conventional DEA model raises the efficiency scores. However, only the efficiency scores of farms with 
high water salinity can change. 
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(1995) discuss input distance functions. An input distance function describes the degree to 
which a firm can contract its input vector without changing its output vector. The estimation 
of distance functions has been attracting attention in the efficiency literature. This interest is 
most likely due to the fact that distance functions can be used to model multi-input /multi-
output production technologies without having to aggregate outputs (or inputs), and without 
having to make behavioral assumptions such as cost-minimization or profit-maximization 
even when using parametric approach (Grosskopf et al., 1995). Distance functions can be 
estimated using parametric and nonparametric techniques.  

In our study, we adopt the DEA input distance function approach. Färe et al. (1994) provide a 
comprehensive discussion of data envelopment analysis, a technique that has the advantage 
of not needing to specify a functional form for the boundary of the production technology.2 
Moreover, the distance functions allow one to calculate the shadow prices of the inputs, as 
the observed prices of inputs in the developing countries are not market clearing prices 
especially for commodities like water.  

While a large number of studies have employed conventional DEA models for the purpose of 
examining technical efficiency (TE) in agricultural production, both in developing countries 
and developed ones (Piot-Lepetit et al., 1997; Rao and Coelli, 1998; Fraser and Cordina, 
1999), few have considered DEA models with non-discretionary production inputs like 
environmental variables (Piesse et al., 1996; Chapman et al., 1999; Henderson and Kingwell, 
2005). We have directly included water salinity into the production function as a non-
discretionary fixed input rather than an undesirable output because the degree of salinity 
measured at the level of a particular farm does not represent the output of that farm’s 
production activity but rather represents the output of the recent activities of all farms. If we 
consider it as a conventional input as outlined in Coelli et al. (1998), this necessitates making 
the assumption that it can be reduced or increased like all other inputs and, in effect, is under 
the control of the farmer. However, this is untrue for water salinity. The farmer has no control 
over water quality degradation. 

The remainder of the paper is organized as follows. Section 2 presents the economic 
modeling. Irrigation production technologies are represented by the input distance function. 
The DEA model is the subject matter of section 3. Section 4 presents and discusses the 
estimation results of the study. Pricing of irrigation water in such developing countries, 
especially MENA countries is the subject of section 5. The paper closes in section 6 with 
some concluding remarks.  

2. The Input Distance Function with Non-Discretionary Inputs 

A variety of conventional measures of TE have been proposed in the past. Many studies 
claim that the approaches used have considered environmental effects as undesirable outputs 
and recalculated the technical inefficiency accounting for these undesirable environmental 
effects (Pitman, 1983; Färe et al., 1989; Färe et al., 1993; Ball et al., 1994; Hetemaki, 1996; 
Tyteca, 1996). This approach raises interest in shadow prices since undesirable outputs are 
not generally priced in markets.  

The above studies have all included three sets of factors: inputs, desirable outputs and 
undesirable outputs. Environmental effects were incorporated in the output vector, and the 
measure of technical efficiency incorporated the generation of one or more environmental 
                                                           
2 A downside of DEA is that estimated shadow prices are indeterminate at the intersections of the hyper planes, 
and some may collapse to zero at extreme data points due to the existence of ‘‘slack regions.’’ Moreover, the 
main drawback of DEA is that it estimates a deterministic frontier where all deviations from the frontier are 
implicitly assumed to be due to inefficiency.  
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effects as by products of the production process. In this paper, as done by Henderson and 
Kingwell (2005), we adopt a different strategy. Environmental degradation represented here 
by water salinity is modeled as an undesirable input which is non-discretionary.  

Consider a farm employing a vector of conventional inputs N
N Rxxx +∈= ),.....,( 1  and a 

vector of non-discretionary inputs to produce a vector of outputs M
M Ryyy +∈= ),....,( 1 . We 

then define the production technology as:  

}. producecan  ),(:),,{( ysxysxT=                     (1) 

The production function defines the maximum output that can be produced from a vector of 
conventional and non-discretionary inputs while the cost function defines the minimum cost 
to produce the exogenously given output. The output and input distance functions generalize 
these notions to a multi-output case. The input distance function describes “how far” an input 
vector is from the boundary of the representative input set, given the fixed output vector. An 
efficiency measure quantifies in one way or another the “distance” to the efficient frontier of 
the technology. Formally, the input distance function is defined as: 

( ) [ ] }),(,/:min{ ,, TsysxD ∈= yx λλ                                                                         (2) 

Equation (2) characterizes the input possibility set by the maximum equi-proportional 
contraction of all conventional inputs consistent with the technology set (1), while keeping 
outputs and non-discretionary inputs constant. The radial input distance function is used to 
measure the Debreu-Farrell technical efficiency. It is homogeneous of degree one, concave 
and non-decreasing in inputs and convex in outputs.3 It will take a value, which is greater 
than or equal to one if the input vector is an element of the feasible input set. Furthermore, 
the distance function will take a value of unity if input bundle is located on the inner 
boundary of the input set. It is dual to the cost function. That is: 

( ) ( ){ }1,:min ,,
w

≥= wyCwxysxD                                                                                     (3) 

( ) ( ){ }1,,:min ,
x

≥= sxyDwxwyC      

Where w is a vector of minimum cost deflated input prices and C is a unit cost function if the 
costs are minimized. This implies that the value of input distance function would be equal to 
one only when the inputs are used in their cost minimizing proportions,  

( ) s)x,(y,D/ wx, =wyC                                   (4) 

Both the cost function and the input distance function, completely describe the production 
technology but they have different data requirements. Whereas, both require data on output 
quantities, the distance function requires data on input quantities rather than input prices. 
Moreover, by applying the DEA distance function model, the shadow prices of the inputs can 
be derived. The availability of information on shadow prices of inputs can be used to estimate 
the irrigation water price elasticity. 

                                                           
3 For the properties of input distance function, see Färe and Primont (1995). 
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3. The Adjusted-DEA Model  

The input distance function is computed non-parametrically using the Data Envelopment 
Analysis (DEA) by specifying water salinity as a non-discretionary production input. We 
choose the distance function approach to calculate Farrell efficiency measure, but the DEA 
approach is chosen to easily incorporate the inequality restraints dictated by theory. The DEA 
model used in the analysis is identical to a conventional input-orientated DEA with variable 
returns to scale (VRS) except that it directly includes water salinity as a non-discretionary 
production input (s) given by the third constraint.4 Assuming the situation with N farmers, 
each producing I outputs by using K inputs. For the Nth farmer these are represented by the 
vectors yin’ and xkn’, respectively. Below is a mathematical representation of the DEA model 
that directly includes water salinity as a non-discretionary production input. Thus, the 
technical efficiency for each farm is computed like this:  

D(y, x)-1 = Minimize θ                                                                                  

                   (λ1
,…,λ

N
, θ) 

    Subject to: 

     0'
1

≥−∑
=

inin
N

n
n yyλ                           i = 1,…, I                (5)  

    0'
1

≤−∑
=

knkn
N

n
n xx θλ                          k = 1,…, K 

     0'
1

≤−∑
=

nn
N

n
n ssλ                                                                  

     1
1

=∑
=

N

n
nλ                                                                              

      0≥nλ ,                                        n = 1,…,  N. 

where θ is a technical efficiency measure of the Nth farmer under VRS (Banker et al., 1984)5 
and nλ are weights attached to each of the efficient farmers. This model ensures that 
inefficient farms are only compared to farms with high or equal water salinity.6  

                                                           
4 In agricultural production studies, the input reducing and output increasing technical efficiency under variable 
returns to scale are commonly used. 
5 Estimating a VRS model allows TE to be estimated without the influence of scale efficiencies. The VRS 
specification forms a production frontier that envelopes data more closely than the CRS specification. 
Therefore, the resulting efficiency scores are equal to or greater than those obtained with CRS model. 
6 This model is estimated by computing the EMS Software version 1.3. When EMS computes an efficiency 
score (which is a distance to the efficient frontier) it does not alter the values of non-discretionary data. The 
distance will only be computed in the directions of the conventional inputs and outputs while the non-
discretionary are fixed. 
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4. Data and Estimation Results 

The data used in this paper comes from a survey conducted with the help of the Tunisian 
Ministry of Agriculture and Hydraulic Resources and a team of the ETH (Swiss Federal 
Institute of Technology) in 2002. Three categories of factors, conventional inputs, desirable 
outputs and water salinity in the form of undesirable input, (against undesirable outputs as in 
much of the literature) will be used. Four outputs (date production, vegetable production, 
cereal production, and fruit production) are considered. Among the inputs considered for 
inclusion in the model are water, labor, phosphate, farmyard manure, farm size and water 
salinity. Limiting analysis to the region of Nefzaoua oases, farms can be assumed as 
homogeneous in terms of soil type, climatic conditions and other physical parameters due to 
geographic proximity. 
For details on characteristics of data, see Belloumi and Matoussi (2006). Descriptive statistics 
of the variables used in the study are given in Table 1. 
4.1. Technical Efficiency Estimates 
Applying Data Envelopment Analysis to a sample of water user associations farms, TE 
measures unconfounded by water salinity variation are generated by specifying water salinity 
as a non-discretionary production input in an input-oriented DEA model. These 
unconfounded TE measures are different from TE measures generated by a conventional 
DEA model. TE scores obtained from the water salinity-adjusted DEA model are greater than 
or equal to those obtained from the conventional DEA model because the inclusion of water 
salinity as a non-discretionary input variable ensures that no farm is compared to another with 
a lower level of water salinity. The descriptive statistics of technical efficiency measures 
given by running the water salinity-adjusted and conventional DEA models are presented in 
Tables 2 and 3. These results show that the mean TE score obtained from the water salinity-
adjusted DEA model is a little higher (0.63) than that obtained from the conventional model 
(0.61). The first (and respectively the second) reflect that on average the farmers can produce 
the same level of output with only 63% (61%) of the inputs if they were operating at the input 
frontier. The results displayed in Tables 2 and 3 demonstrate that inclusion of water salinity 
as an additional non-discretionary input does not change the distribution of efficiency of 
farms very much. The number of efficient farms is the same. 

While changes in TE distributions and scores provide useful information on the effect of 
incorporating water salinity into the production frontier, the changes in the relative rankings 
of the farms are more important.  If farm rankings between the water salinity-adjusted and 
conventional TE series are significantly different, then it can be concluded that failure to 
account for variation in water salinity leads to an incorrect assessment of each farm’s relative 
performance. A simple way to compare the impact of model specification is to check the 
consistency of two model specifications in terms of the relative ranking of the farms. The 
Spearman Rank Correlation Coefficient (SRCC) statistically tests if the relative rank of farms 
changes when employing the different model specifications.  The SRCC test statistic is 
calculated as follows: 

)1²(

²6
1 1

−−=
∑
=

nn

d
r

n

i
i

s                                                                                           (6) 

where di is the difference between the rankings for each farm under the different model 
specifications and n is the sample size. The hypothesis tested is: 
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H0: rs = 0; there is no relationship between the model specifications. 

H1: rs ≠ 0; there is a relationship between the model specifications. 

An SRCC test statistic estimate of 0.949 is obtained allowing us to have a t-test statistic equal 
to 11.45.7 This result implies the rejection of the null hypothesis at the 1 percent level of 
significance indicating that a strong, positive and statistically significant correlation exists 
between the TE estimates obtained by the two models. Thus, the ranking of farms is 
statistically invariant to the model specifications examined here. In this instance the variation 
in water salinity across farms is probably not large enough to significantly affect the relative 
rankings of the sample farms.   

4.2. Optimal Scale of Production 
We now present results examining the optimal scale of production. We estimate variable 
returns to scale (VRS) and non-increasing returns to scale (NIRS) water salinity-adjusted 
DEA specifications, so that increasing returns to scale (IRS), constant returns to scale (CRS) 
and decreasing returns to scale (DRS) can be identified. The CRS assumption is only 
appropriate when all farmers are operating at an optimal scale. The use of the CRS 
specification, when not all farmers are operating at the optimal scale, will result in measures 
of TE which are confounded by scale efficiencies (SE). The use of VRS assumption will 
permit the calculation of TE devoid of these SE effects. The CRS TE measure can be 
decomposed into its ‘pure’ TE and SE components by running a CRS water salinity-adjusted 

DEA model, which is obtained by deleting the fourth constraint, ( 1
1

=∑
=

N

n
nλ ) from model (5). 

Because the VRS specification forms a production frontier that envelopes data more closely 
than the CRS specification, the VRS TE measure (θVRS) is equal to or greater than the CRS 
measure (θCRS). The fourth convexity constraint ensures that an inefficient farm is only being 
compared against farms of similar size. Thus, by estimating both CRS and VRS 
specifications, SE estimates can be determined as : 

SE= θCRS /θVRS                                                                      (7) 

Scale inefficiency arises due to the presence of either increasing or decreasing returns to 
scale, which can be determined by solving a non-increasing returns to scale DEA model 

which is obtained by substituting the VRS constraint 1
1

=∑
=

N

n
nλ with 1

1
≤∑

=

N

n
nλ . If there is a 

difference between the CRS and VRS TE scores, this indicates scale inefficiencies exist. 
SE=1 indicates scale efficiency and SE <1 indicates scale inefficiency. Given that a farm is 
scale inefficient, in order to assess if the technology in that vicinity is exhibiting increasing or 
decreasing returns to scale, a non-increasing returns to scale specification needs to be 
estimated. To determine if IRS and DRS exist, the NIRS TE is compared to the VRS TE 
estimate. If the two are unequal, this indicates IRS and the scale of farm level operations can 
be increased. If the two are equal, this indicates that DRS exists and farm operations need to 
be reduced in size. 

Descriptive statistics of SE indexes are reported in Table 4, as well as the number of farms 
operating at constant, increasing, and decreasing returns to scale. The scale efficiency index 
for the water user associations farms varies from 6.6% to 100%, with a sample mean of 
89.6%. In terms of scale efficiency, 41 (29.72%) farms exhibit CRS. Among the scale 
inefficient farms, 70 (50.72%) show increasing returns to scale and 27 (19.56%) show 
                                                           
7 With n>30, rs is approximately normally distributed with mean zero and standard deviation 1/(n-1)0.5, so that 
the Z test is Z = rs(n-1)0.5. 
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decreasing returns to scale. These results show that many farms are operating at below the 
optimal scale of production (70.28%). Farms are generally small because when property in 
the oasis passes from one generation to the next, the size of the farm is fragmented until it 
becomes sometimes economically unfeasible to use. Upward of 50 percent of oases farmers 
could improve SE if they increased scale in terms of farm size.  

4.3. Shadow Prices of Water 

The shadow prices for water are computed by running the water salinity-adjusted DEA model 
specified above by equation (5). The shadow price is the maximum price the farmer is willing 
to pay to relax the water constraint by one (marginal) unit. It is also called the shadow price 
of the water constraint. Notice that this shadow price varies with the level of the constraint 
and will be positive only when the constraint is binding. Notice also that it is equal to the 
inverse derived demand for water (Tsur, 2005). 

If farmers pay for irrigation water on a per area basis or any other non-volumetric way, then 
the water fee, once paid, is basically a sunk cost and farmers will use irrigation water up to 
the point where its value of marginal productivity is zero. In our study, farmers pay for 
irrigation water on a per area basis. The estimation results would then be expected to give a 
shadow price of about zero. In addition, in Tunisia like in many other developing countries, 
water is a scarce resource in the sense that farmers face a stringent water resource constraint 
and water is often under priced. In such a context, farmers are likely to overuse water 
resources and the marginal productivity of the water tends to be low, as reported by Wang 
and Lall (2002). These shadow prices are positive, reflecting that water is a normal input in 
the production process. For instance, the average shadow price for water is very low.  
4.4. Analysis of Derived Demand for Water 

Water is one of many inputs of agricultural production. As a productive input, it is valued for 
its contribution to farm outputs, rather than as a commodity for final consumption. The 
relationships between irrigation farm inputs are complex and seldom linear. Some inputs are 
essentially fixed in the short run (such as land), while others are variable (such as fertilizers). 
Because some inputs are fixed, diminishing returns occur at some point such that the 
continued addition of variable inputs eventually yields smaller and smaller additional units of 
output.  

Overall, the quantity of water demanded is derived from its price, its contribution to 
production (which depends on the prices of all inputs) and the prices of outputs (which 
determine the optimal quantities to produce). If a demand curve for water is presented for a 
given level of other inputs, changes in the price of water will lead to a movement along the 
demand curve. Changes in output prices, or in input prices, technological changes in 
production methods (investment in capital, such as more efficient irrigation systems) and use 
of other interdependent inputs, will lead to shifts of the demand curve for water.  

The change in the amount of water demanded, due to changes in price, is measured by price 
elasticity. It is likely that the elasticity for water demand will vary over space, time and 
between irrigators. The price elasticity of water demand is the percentage change in the 
quantity demanded which results from a one percent change in price. Irrigators have an 
incentive to reduce the quantity of water demanded if the price of water rises, therefore, water 
price elasticity is negative. Elasticity is measured at a specified level of price or quantity, and 
will generally be different at other prices and quantities. If it is between –1 and minus 
infinity, demand is said to be relatively elastic. That is, quantity demanded responds by more 
than the proportionate change in price. In such a case, the irrigator’s expenditure on water 
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will fall as the price rises. If it is between zero and –1, demand is said to be relatively 
inelastic. That is, the quantity demanded, responds by less than the proportionate change in 
price. In such a case, the farmer’s expenditure on water will increase in response to an 
increase in price even though their consumption of water has fallen. 
Data of prices and quantities of water exchanged is required to estimate the responsiveness of 
demand but this kind of data has been difficult to obtain. It is rare to find published empirical 
estimates of the price responsiveness of demand for irrigation water in developing countries 
from observing irrigators’ behavior in historical water purchases. Many previous studies of 
agricultural water demand rely on simulated data and linear programming techniques 
(Bontemps and Couture, 2002; Hooker and Alexander, 1998; Appels et al. 2004).  

Analysis of the responsiveness of demand for irrigation water using shadow prices derived 
from the model has been done in this work.  

The water demand equation we estimate is of total water use by a farmer with the explanatory 
variables including shadow prices for irrigation water and the income of the farmer. 
However, the problem is about the choice of the functional form for the estimation equation. 
Previous work on residential water demand has generally used linear, log-log, or log-linear 
functional forms. Information on the crop production function influences the decision of the 
appropriate functional form. Some research has shown that a quadratic production function 
provides a good fit for observed yields and water input levels in agriculture. A quadratic 
production function implies that we estimate a linear input-demand function. In addition, in 
contrast to a Cobb-Douglas production function, which assumes a constant price elasticity of 
demand, a quadratic production function allows the elasticity to differ depending on the price 
observed. 

We estimate water demand using the specification log-log:8  

Log(qi)= β0 +β1 Log(w1i) +β2 Log(w2i)  +β3 Log(w3i)  +β4 Log(w4i)  +β5 Log(p1i)   

+β6 Log(p2i)  +β7 Log(p3i)  +β8  Log(p4i) +εi                                     (8) 

where qi is the observed quantity of water used by the ith farmer; w1i, w2i, w3i and w4i are 
respectively the shadow prices for inputs (water, labor, phosphate and manure); and p1i, p2i, 
p3i and p4i are respectively the shadow prices for outputs (date production, vegetable 
production, cereal production, and fruit production). The shadow price for water is perhaps 
the variable of most interest to this study. We expect the coefficient on water price to be 
negative since farmers will be more careful with water application at a higher water price.  

The results of the water demand estimation are presented in Table 5. We find that the water 
price coefficient is still negative and significant, with a price elasticity close to -0.44. The 
price elasticity of irrigation water has the expected negative sign, implying that an inverse 
relationship between the price of water and the quantity demanded. This finding demonstrates 
that marginal price can influence farm water demand. The significance of water price in this 
equation suggests that better management alone can result in a significant amount of 
conservation, and can do so in the short run. The result suggests that pricing policies can be a 
potential instrument for water conservation. The results also show that the coefficients 
associated to shadow prices of other inputs are all negative but insignificant except for the 
manure which is significant. These results indicate that the other non-water farm inputs such 
as fertilizers and labor are complementary to water. Many previous results, in both economics 

                                                           
8 Using the same data and applying the LM ratio test, we found that the frontier production function assumes the 
form Cobb-Douglas against translog when we consider only the main output which is date production. 
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and agronomy, show that there are very few substitutes for effective water in crop production. 
The coefficients of shadow prices of the outputs are negative for date and fruit production 
and positive for vegetable and cereal production. They are significant at ten percent except 
for cereal output. These results indicate that even if the prices of outputs increase, the water 
demand could decrease.   

Previous econometric studies which have estimated irrigation water demand have found 
varying results. Nieswiadomy (1988) found a price elasticity of water demand of -0.25, while 
Moore et al. (1994) found no response of farmers to increased water rates. The study of 
Schoengold et al. (2005) used an econometric analysis to decompose water use by both crop 
and irrigation technology to estimate the effect of land quality characteristics in determining 
total applied water. They found evidence that these characteristics (soil permeability, slope, 
and temperature levels) are significant in determining water demand. All the studies reported 
by Appels et al. (2004) used mathematical models of representative farm production systems 
to estimate elasticity of demand for water in major irrigation regions within the Murray-
Darling Basin. All the models estimated a very inelastic demand for irrigation water at low 
prices and a slightly less inelastic demand at higher prices. 

5. Pricing of Irrigation Water   

The costs of providing irrigation water include a fixed cost of operation and maintenance and 
a variable cost, which depends on the quantity of water supplied. In addition, there is a capital 
cost of constructing a water project. The World Bank (1993) argues that the pricing of water 
resources will give users an incentive to pursue efficiencies in utilization. The argument goes 
that water has been under-priced as a scarce resource. The conceptualization of water as a 
free resource can result in conflicts between users and negative environmental externalities. 
Negative environmental externalities can be reduced by ‘correct’ pricing whereby 
environmental costs are internalized in production and ultimately borne by consumers and/or 
by the application where appropriate of the ‘polluter pays’ principle. 

There are many pricing systems used for recovering some or all the costs involved. In some 
developing countries such as India and Pakistan, which have benefited greatly from 
irrigation, the revenues received fall far short of the costs of supplying irrigation water to 
users, and often do not recover even the initial capital costs (Schoengold and Zilberman, 
2005). Water pricing systems can be designed to encourage users of water for low value 
purposes to conserve water -thus freeing up water for transfer to other uses - or to adopt 
water-conserving technologies. Water pricing is thus conceived as a tool for increasing 
economic efficiency and for internalization of environmental externalities. The most common 
pricing systems are per-hectare fees, increasing or decreasing block rates, and volumetric 
fees. A volumetric fee provides an incentive to limit water use, while a per-hectare fee 
provides an incentive to cultivate agriculture more intensively. Under per area pricing, 
changing the (per hectare) water fee across crops can be used to improve efficiency by 
affecting farmers’ crop selection. 

The block rates can either be fixed or may depend on the area and time of year. Israel has 
introduced a pricing structure giving high incentive to save water with an increasing block 
rate pricing structure. A pricing system in progressive blocks, where the price of water 
increases according to the volume consumed, can have a really dissuasive effect on the 
consumption of water depending on the progression of the prices and their level, but it is 
seldom applied to irrigation in MENA countries except in Israel and Jordan.  

Some countries like Brazil adopt a combination of these systems; for example charging a per-
hectare fee for access to water, and then a reduced volumetric fee for water delivered. The 
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extreme case, where structure is of little importance, is where water is free (Egypt), which 
does not encourage water saving at all. In Egypt, irrigators are only responsible for the 
maintenance of canals that are attached to their fields. 

In volumetric pricing systems, water is priced based on direct measurement of volume of 
water consumed. A special case of volumetric fee is marginal cost pricing where efficiency 
requires that the price of water reflect the marginal cost of water supply disregarding water 
allocation between crops. Volumetric pricing methods encourage water conservation. 
However, in many developing countries, the installation of a volumetric fee system is 
difficult due to their inability to measure the quantity of water an individual uses and prices 
based on marginal costs are often too high for low farm incomes. Most of developing 
countries use a per-hectare fee system (Tsur et al. 2004). 

In Tunisian oases, water user associations are considered a useful medium through which cost 
recovery procedures can be implemented. They are responsible for a wide range of 
management activities. Delivery of water to user groups gives them the responsibility for 
both water distribution and fee collection at the local level. A rotational method for equitable 
allocation of irrigation water fixes flows by day, time and duration of supply proportional to 
irrigated area.  

In Tunisia, the regular increase in the price of irrigation water since the mid-1980s has 
enabled water authorities to recover operation and maintenance costs. Besides that, other 
institutional measures have enabled the stabilization of water demand since 1997 (Dinar and 
Subramanian, 1997; Belhaj, 2002). Some Tunisian experiments on price increases for water 
show an impact on consumption and have proved that water pricing could be a good tool for 
water conservation. 

In Morocco, water administration is currently undergoing a structural transformation from a 
centralized political structure towards a decentralized system of governance. The pricing 
adjustment plan, proposed for schemes in financial imbalance, should improve covering the 
cost of recurrent charges (operation, maintenance and renewal by 2010). The adjustment plan 
is expected to achieve a budget balance within 1 to 6 years for schemes in slight deficit, 
which represent 40% of irrigated land. On the other hand, in schemes with severe deficit – 
12% of land area, where water is lifted to be put under pressure – it should reach a recovery 
rate of 65 to 80% (Chohin - Kuper et al., 2003). 

Other countries in MENA region have increased or expect to make limited increases, to 
recover more of the water costs: Lebanon, Israel and Jordan. A price increase of 20 to 30% is 
expected in Lebanon.  

Pricing experiments in the majority of MENA countries (except oil countries) are oriented 
towards cost recovery objectives in general, and have contributed to the reduction of public 
financing - at least with respect to operation and maintenance costs of irrigation schemes. 
However, these price increases did not contribute significantly to water demand management 
objectives and there is a need for complementary tools and policies in order to tackle the 
water resource issue. 

Most MENA countries now face challenges to satisfy future water demands that could reach 
development requirements and environmental issues. Such challenges would require not only 
long term planning, but also the consideration of the inter-linkages between technical, 
economical, social and environmental issues. For this reason new resources such as non-
conventional resources are to be used to close the gap between the volume of water available 
and the volume of water needed for use. The most common non-conventional resources are: 
desalination of brackish water, water harvesting and treated wastewater. For example, for 
future agricultural uses, the reuse of treated wastewater and drainage water is considered an 
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important element of water policies. Both these resources have health and environmental 
implications, and hence, a functional system of monitoring and continuous evaluation is 
absolutely essential. Long-term potential environmental impacts of reusing drainage water 
and criteria for use should be clearly identified. Institutional and legal implications of 
establishing a water quality data monitoring and management system has to be prepared and 
implemented. 

6. Conclusions 

Freshwater resources are increasingly limited in many arid regions, and understanding the 
patterns of how individuals use those water resources is crucial for a better understanding of 
water demand, with the goal improving water management. One available mechanism to 
change those patterns of use is the price of water. Hence, the measurement of the price 
elasticity of water demand has been the subject of many previous studies. The majority of 
these studies have focused on urban water demand, despite the fact that agricultural producers 
use the majority of water resources in many areas of the world. 

In this paper, we develop a DEA model with water salinity as a non-discretionary input and 
estimate a model of irrigation water demand based on the role of water in the farm production 
function. We consider production technology with an input distance function, which is dual 
compared to the more commonly used cost function. This duality is employed to retrieve the 
shadow price of water which is used to estimate the derived demand for irrigation water by 
using the establishment-level data for 138 farms belonging to different water users 
associations in the oases of Tunisia.  

In the literature, cost, production and demand functions have been used to estimate the 
derived demand of irrigation water use. These three approaches are based on the maintained 
axioms of optimization and assume that farms are operating at their frontiers, and that cost 
and demand functions require an established market for water and information regarding 
costs and prices. In the absence of a well established water market and information about 
prices and costs, the DEA input distance function approach can be used to asses the shadow 
prices of irrigation water if information about quantities of inputs and outputs is available 
when farms are not operating at their frontiers. Thus the DEA input distance function also 
provides estimates of farms’ technical efficiency. 

One objective of our analysis is to measure technical and scales efficiencies of farms 
unconfounded by water salinity variation and the price elasticity of irrigation water use in the 
South West of Tunisia, as it provides important information about the effectiveness of using 
price reforms to manage water demand. We find that the mean of technical efficiency levels 
for the farms is about 63%. This result indicates that for the same amounts of outputs, the 
inputs could be contracted by up to 37% if the farmers are operating at the input frontier. 
Spearman coefficient of rank correlation is used to test whether the farms' performance 
rankings, before and after accounting for water salinity, are significantly different.  We find 
that the fact to account for variations in water salinity does not significantly bias the relative 
performance of the farms.  This is partly attributed to a lack of variation in water salinity 
between farms. The mean of scale efficiency levels is about 89%. The results also show that 
about 70% of farms are operating at below the optimal scale of production and 50% of oases 
farmers could improve SE if they increased scale in terms of farm size. Our results also 
support the hypothesis that farmers respond to an increase in the marginal price of water by 
reducing their water applications. The price elasticity of irrigation water is close to –0.44. It is 
shown to be significant, thus water pricing would be a pertinent instrument for better 
management and water conservation. This result will prove to policy makers the relevance of 
this alternative over other costly and inefficient tools. The results of shadow price elasticities 
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of the other non-water farm inputs such as fertilizers and labor indicate that these inputs are 
complementary to water. 
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Table 1. Summary Statistics for Output and Input Variables  

 
Variables Mean Std.dev Min. Max. Median 

Date production (kg) 2556.5 5189.5 20 47050 1100 

Vegetable production (kg) 28.55 133.56 0 1000 0 

Cereal production (t) 0.858 1.408 0 6.666 0 

Fruit production (kg) 22.95 78.03 0 500 0 

Irrigated water (m3) 11390.5 15391.7 104 129600 6912 

Labour (hour/year) 131.77 179.04 0 1760 90 

Phosphate (kg) 84.72 161.66 0 1200 0 

Manure (t) 3.265 3.837 0 20 2 

Farm size (are) 88.45 120.59 0.15 1000 50 

Water salinity (g/l) 4.128 1.74 1.8 7 3.6 

Sample size 138 138 138 138 138 

 
 

Table 2. Frequency Distributions of TE Estimates from Water Salinity-Adjusted DEA 
Model 
Efficiency  

Index (%) 

Count Percent 

 

Cum. percent 

 

<20 13 9.42 9.42 

20-40 35 25.36 34.78 

40-60 20 14.49 49.28 

60-80 13 9.42 58.70 

80-100 13 9.42 68.12 

100 44 31.88 100.00 

Mean 63.19   

Median 60.73   

Maximum  100.00   

Minimum  12.28   

Standard deviation 32.08   

Observations  138   
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Table 3. Frequency Distributions of TE Estimates from Conventional DEA Model 
Efficiency  

Index (%) 

Count Percent 

 

Cum. percent 

 

<20 15 10.87 10.87 

20-40 37 26.81 37.68 

40-60 18 13.04 50.72 

60-80 16 11.59 62.32 

80-100 8 5.80 68.12 

100 44 31.88 100.00 

Mean 61.11   

Median 57.07   

Maximum  100.00   

Minimum  12.28   

Standard deviation 32.15   

Observations  138   

 

Table 4 . Optimal Scale of Production 
Scale Efficiency 

Index (%) 

Mean 

 
Maximum Minimum Std. Dev 

Number CRS 

farms 

Number IRS 

farms 

Number DRS 

farms 

89.61 100.00 6.61 18.74 41(29.72%) 70 (50.72%) 27 (19.56%) 
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Table 5. Estimation Results of Irrigation Water Demand Function 
Variable  Coefficient t-Statistic Prob. 

Log(W1) -0.442 -7.625 0.00 

Log(W2) -0.063 -1.451 0.15 

Log(W3) -0.024 -1.142 0.26 

Log(W4) -0.043 -2.368 0.02 

Log(p1) -0.096 -1.853 0.07 

Log(p2) 0.111 1.941 0.06 

Log(p3) 0.004 0.196 0.84 

Log(p4) -0.109 -1.934 0.06 

Constant 3.047 5.583 0.00 

R-squared 0.79 - - 

 


