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Abstract 
This paper aims at modelling the density of quarterly inflation based on time-varying 
conditional variance, skewness and kurtosis model developed by Leon, Rubio, and Serna 
(2005). They model higher-order moments as GARCH-type processes by applying a Gram-
Charlier series expansion of the normal density function. We estimated seven univariate 
models, including GARCH-M and TARCH-M models, assuming three different distributions 
for the error term, namely: normal, student t, and GED distributions. Additionally, the model 
that allows for non-constant higher order moments, GARCHSK-M, has been estimated. 
Moreover, the paper utilizes two multivariate models, Dynamic Conditional Correlation (DCC) 
and Diagonal VECH models to isolate the time-varying conditional correlations between 
inflation and two financial variables, including growth in domestic credit and real exchange 
rate. Results revealed the significant persistence in conditional variance, skewness and kurtosis, 
which indicate high asymmetry of inflation. Diagnostic tests indicated that models with 
invariant volatility, skewness and kurtosis are inferior to the models that permit them to vary 
over time. Moreover, depending on models of static historic correlation between inflation and 
the highly financial variables in order to evaluate inflation dynamic behavior is misleading and 
is a poor informative. Comparing the predictive power of different models showed that basic 
models are more accurate in forecasting out-of-sample inflation according to some criterions 
and GARCHSK-M is better for other criterions. By applying Diebold and Mariano’s (1995) 
encompassing test, it was found that all models could be combined together to form a more 
accurate forecast. We have done the combination of forecasts using equal weights, Bayesian 
Model Averaging (BMA), and Dynamic Model Averaging (DMA). Results of forecast 
combination showed that the combined forecasts outperform the projection of best single 
model. 
JEL Classification: C13, E31, E37 
Keywords: inflation targeting, conditional volatility, skewness and kurtosis, modelling 
uncertainty of inflation, multivariate GARCH. 
 

 ملخص
 

على الوقت متفاوت التباین المش�����روط، الإلتواء ونموذج التفرطح التي  المعتمدتھدف ھذه الورقة إلى نمذجة كثافة التض�����خم الفص�����لي 

بتطبیق توس��یع س��لس��لة  GARCH من نوع لحظات العلیا كعملیاتالنموذج فقد قاموا بخلق ). 2005وض��عھا لیون، روبیو، وس��یرنا (

، على TARCH-Mونماذج  GARCH-Mحید المتغیر، بما في ذلك لالجرام ش������ارلییھ من دالة الكثافة العادیة. قدرنا س������بعة نماذج 

. بالإض������افة إلى ذلك، فإن النموذج الذي GEDافتراض ثلاثة توزیعات مختلفة لمص������طلح خطأ، وھما: عادي، طالب تي، وتوزیعات 

بة ال ظاتلحل یس������مح تة ، ا علىالأمرت ثاب المتغیرات،  ا. وعلاوة على ذلك، تس������تخدم ورقة نموذجین متعددGARCHSK-Mلغیر 

مش��روطة بین التض��خم واثنین المتفاوتة ال یةقطري لعزل الارتباطات الوقتال VECH) ونماذج DCCش��رطي الدینامیكي (الارتباط الو

كبیر في لا التباین من المتغیرات المالیة، بما في ذلك النمو في الائتمان المحلي وس�����عر الص�����رف الحقیقي. وكش�����فت النتائج اس�����تمرار

ثابتة النماذج لا انارتفاع التض��خم. وأش��ارت الاختبارات التش��خیص��یة في  ش��یر إلى عدم التماثل المش��روط ، الالتواء والتفرطح، والتي ت

مع مرور الوقت. وعلاوة على ذلك، اعتمادا على نماذج  بالتغیرمع التقلب، الالتواء والتفرطح أقل ش������أنا من النماذج التي تس������مح لھم 

قارنة أظھرت القوة موباللتض����خم. لالیة للغایة من أجل تقییم الس����لوك الدینامیكي ثابت بین التض����خم والمتغیرات المالتاریخي الرتباط الا

-GARCHSKو تمعیاراالعینة وفقا لبعض الالتض��خم خارج بنماذج الأس��اس��یة ھي أكثر دقة في التنبؤ للالتنبؤیة من النماذج المختلفة 

M  ختبار، فقد وجد أن جمیع نماذج یمكن الا) التي تش������مل 1995أخرى. من خلال تطبیق دیبولد وماریانو ( تمعیارامن ھو أفض������ل

لتش��كیل توقعات أكثر دقة. قمنا بھ من مزیج من التوقعات باس��تخدام أوزان متس��اویة، النظریة الافتراض��یة نموذج متوس��ط  االجمع بینھ

)BMA) ودینامیكیة نموذج متوسط ،(DMAمجتمعة تتفوق على توقعات نموذج واحد.الائج الجمع بأن التوقعات ). وأظھرت نت 
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1. Introduction 
Exploring the relationship between inflation and its higher-order moments is quite important 
for central banks, especially under inflation targeting regime. That is because the density 
forecasts allow a much richer setting of anti-inflation policy. Given that the Central Bank of 
Egypt intended to adopt an inflation targeting framework to anchor its monetary policy when 
the basic requirements are met (Central Bank of Egypt, 2005), it must have accurate models to 
predict future inflation with different frequencies. Additionally, the Central Bank of Egypt 
publishes a quarterly bulletin, including inflation data, which supports the need for forecasting 
inflation on a quarterly basis. Therefore, the paper aims at exploring the relation between 
quarterly CPI inflation and its higher-order moments, which is likely helpful in better 
understanding of the risks involved in inflation. 
Historically, the Business and Economic Statistics Section of the American Statistical 
Association (ASA) and the National Bureau of Economic Research (NBER) started publishing 
the first series of quarterly density forecasts in macroeconomics in 1968 (Tay and Wallis, 
2000). In addition, the Bank of England has published a density forecast of inflation in its 
quarterly Inflation Report since February 1996 (Wallis, 2004).  
Research on inflation forecasting is still very limited in Egypt. Noureldin (2005) assessed the 
robustness of three alternative models to forecast inflation in Egypt. These three models are 
output gap, money gap, and Vector Autoregressive (VAR) models. However, point forecast 
does not provide a full description of the uncertainty associated with the forecast. Noureldin 
(2008) employs GARCH-M model to investigate inflation dynamics in Egypt and found a 
strong positive relationship between the level and variances of inflation. However, ARCH 
family models assume that the conditional distribution is time-varying only in the first two 
moments and ignore the information content in higher-order moments (Chaudhuri, Kim, and 
Shin, 2011).  
However, while modelling the third and fourth moments became popular in analyzing the stock 
markets, it is not widely used in studying inflation. Roger (2000) found evidence towards right 
skewness in inflation data. In addition, (Chaudhuri, Kim, and Shin, 2011) found that there is a 
positive correlation between mean inflation, variance and skewness. Harvey and Siddique 
(1999) developed an approach to estimate time-varying conditional skewness by modelling 
conditional volatility and skewness as GARCH (1,1) process assuming that the standardized 
errors follow noncentral t-distribution. To allow for nonconstant conditional kurtosis, Leon, 
Rubio, and Serna (2005) developed the methodology of Harvey and Siddique (1999) by jointly 
modelling time-varying variance, skewness and kurtosis (GARCHSK model) assuming that 
the error term is derived by Gram-Charlier series expansion of the normal density function. 
The latter density is easier to estimate than the noncentral t-distribution suggested by Harvey 
and Siddique (1999). Ahmed (2011) modelled the density of monthly CPI inflation using the 
GARCHSK in mean (GARCHSK-M)model and presented evidence that models allowing 
fortime-variant higher order moments outperform models that keep them invariant. Thus, the 
current paper contributes to the literature by modelling the relationship between quarterly CPI 
inflation and its second, third, and fourth moments, so the validity of the model to different 
frequency of data can be examined.  
Thus, the current research hypothesizes that models with nonconstant higher order moments 
are more accurate in explaining the risks involved in inflation compared to models that keep 
them unchanged. Therefore, the main question is: Does modelling quarterly CPI inflation using 
models allowing for varying higher order moments helps in better understanding of inflation 
uncertainty? 
To answer this question, nine different models are estimated. These models include 7 univariate 
models of including GARCH-M and TARCH-M models, assuming three different distributions 
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for the error term. Additionally, GARCH-M model is extended to permit conditional skewness 
and kurtosis to follow GARCH type structure, assuming a Gram-Charlier series expansion for 
the normal density function. 
In addition to the statistical benefits of accounting for second order moment of inflation, the 
study models time-varying conditional correlation between inflation and two of financial 
variables , namely, growth in domestic credit and real exchange rate. This is done by applying 
two multivariate GARCH models; diagonal VECH (DVECH) and Dynamic Conditional 
Correlation (DCC). These models allow for better understanding of dynamic co-movements, 
which improve the decision making process under an inflation targeting regime. This is quite 
important given the growing debate since the recent financial crisis that suggested the need to 
pay more attention to include financial variables inside the macroeconomic models (see Borio 
(2011).  
Results indicate that there is a significant persistence in conditional variance, skewness and 
kurtosis. Moreover, comparing different models shows that GARCHSK-M model is superior 
to models with time invariant higher order moments in terms of the behavior of standardized 
residuals and the likelihood ratio test. Additionally, using models of static historic correlation 
between inflation and the highly financial variables to evaluate inflation dynamic behavior is 
deceptive and is a poor informative. This is because inflation data for Egypt, like many 
developing countries, suffers from many structural breaks and changes in adopted policies. 
Furthermore, forecast evaluation is run recursively for different forecasting horizons ranging 1 
quarter to 8 quarters, as inflation in actual policy conduct is likely to be forecasted in a two-
year horizon. According to Root Mean Square (RMSE) criterion, the different time-invariant 
models are more accurate in forecasting power, in comparison with GARCHSK-M. On the 
other hand, GARCHSK-M outperforms all competing models in terms of Theil Inequality 
Criterion (TIC) over different forecasting horizons. Applying the encompassing test introduced 
by Diebold and Mariano (1995) reveals that the all competing models are not encompassed by 
the best Model according to RMSE over the different forecasting horizons. This implies that 
these models could be combined together to form single forecast. The combination of forecasts 
is done using three different combination methods: equal weights, Bayesian Model Averaging 
(BMA), and Dynamic Model Averaging (DMA). Based on these three approaches, it is evident 
that the combined forecasts are superior to the projection of the best forecast of individual 
models. 
The paper is structured as follows. Section 2 is devoted to review the existing literature. Section 
3 presents the different models employed in the current research, while the preliminary check 
for the data, analysis of the results and comparison of different models are the core of section 
4. Section 5 presents the methodology and results of forecast combinations. Finally, section 6 
concludes and draws policy implications. 

2. Literature Review 
Modelling the relationship between inflation and its higher-order moments is quite important 
for policymakers to provide a better understanding of the uncertainty of inflation. Friedman 
(1977) asserts that high inflation leads to more variable inflation. This inflation uncertainty is 
costly since it distorts relative prices and increases risk in nominal contracts (Berument et al, 
2001). From the empirical perspective, Engle (1982) empirically proved that for some kinds of 
data, including inflation, the variance of the disturbance term is not stable as usually assumed 
by OLS model. Instead, he used Maximum Likelihood (ML) methodology to study UK 
inflation and finds that it follows Autoregressive Conditional Heteroscedasticity (ARCH) 
process. The ML estimator is more efficient than OLS estimate. However, the ARCH model is 
criticized as there is no clear approach to choose the suitable number of lags of the squared 
residuals to be included in the model. Additionally, this number of lags may be relatively large 
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leading to non-parsimonious model and a violation of the non-negativity assumptions for the 
volatility equation. Furthermore, it assumes that the current conditional volatility depends only 
on the past values of residuals squared, which may be an unrealistic assumption as the volatility 
response to positive and negative shocks are not similar (Engle,1995; Rachev et al,2007; and 
Brooks,2002). 
Bollerslev (1986) presented a generalized ARCH (GARCH) process by modelling the 
conditional variance as an ARMA process to allow for a more flexible lag structure without the 
violation of the non-negativity restrictions. However, the basic GARCH model is limited by 
assuming that the response of variance to negative and positive shocks is similar. To account 
for this asymmetry, Nelson (1991) proposed the exponential GARCH (EGARCH) model in 
which the conditional variance is a function of both the size and the sign of lagged residuals 
assuming that the residuals follow generalized error distribution (GED). However, this 
distribution allows shocks of different signs to have a different impact on volatility, but is still 
symmetric like the normal distribution (Harvey and Siddique, 1999). Glosten, Jagnnnathan and 
Runkle (1993) introduced a formula that captures the leverage effect of financial time series, 
namely threshold ARCH (TARCH) or GJR specification1. 
Theoretically, the relationship between inflation and skewness could be examined using two 
different models. Under a sticky price model, Ball and Mankiw (1995) argue that there a 
positive correlation between the mean and skewness of the price-change distribution. However, 
the model assumes that the mean-skewness correlation vanishes in the long-term since this 
correlation is attributed to short-run considerations. On the other hand, under a flexible price 
model, Balke and Wynne (1996) show a positive correlation between mean inflation and 
skewness. Opposite to Ball and Mankiw (1995), they believe that this relation should persist or 
even it may be strengthened in the long-run. Consequently, modelling the mean-skewness 
relationship of inflation could highly great important in investigating and forecasting future 
inflation.  
Although ARCH family models are quite suitable in modelling time-varying conditional 
variance, they assume that skewness and kurtosis are time invariant and ignore the information 
content in higher-order moments (Chaudhuri, Kim, and Shin, 2011). To fill this gap, Harvey 
and Siddique (1999) introduced a model to jointly estimate nonconstant conditional variance 
and skewness. They extended the traditional GARCH (1,1) model by explicitly modelling the 
conditional variance and skewness using ML framework  assuming that the standardized errors 
follow noncentral t-distribution. To allow for nonconstant conditional kurtosis, Leon, Rubio, 
and Serna (2005) developed the methodology of Harvey and Siddique (1999) by introducing 
GARCHSK model assuming that the error term is derived by Gram-Charlier series expansion 
of the normal density function. This distribution is easier to estimate compared to the 
noncentral t-distribution suggested by Harvey and Siddique (1999).  
Chaudhuri, Kim, and Shin (2011) introduce a semi-parametric functional autoregressive (FAR) 
model for forecasting a time-varying distribution of the sectoral inflation rates in the UK. 
Ahmed (2011) modelled the density of monthly CPI inflation using the GARCHSK-M model 
and found that models that permit higher order moments to vary across time outperform models 
that keep them constant. This paper contributes to the literature by modelling higher order 
moments of Egyptian quarterly inflation data. Moreover, it explores the dynamic relationship 
between inflation and other high volatile financial variables, such as growth in credit and real 
exchange rate by employing two Dynamic Multivariate GARCH models that have never been 
applied to study inflation in Egypt. Furthermore, the estimated models are used to calculate the 
forecasts of inflation on both short-term and medium-term horizons. Finally, the contribution 

1 For more details about the different extensions of ARCH/GARCH models, see Bollerslev (2008). 
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of the current research is using the forecasts resulting from different individual models to 
improve the prediction accuracy by providing a combined forecast using two methods of 
forecast combinations: BMA and DMA, over the different predicting horizons. 

3. Empirical Models 
This section presents the basic GARCH model briefly as well as the TARCH extension to 
account for the leverage effect. Then, we present both multivariate GARCH models and 
GARCHSK-M model that permits conditional skewness and kurtosis to vary across time. The 
methodology of Leon, Rubio, and Serna (2005), used to estimate the latter model, will be 
introduced in detail.   

3.1 Models of time-varying conditional volatility 
Bollerslev (1986) extended the basic ARCH model to relate the conditional variance to both 
past squared errors and past conditional variances. The GARCH(1,1) model has the following 
specification of the conditional variance 

ℎ𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 

Where th  is the conditional variance, 1−th  is the past volatility which is used as a measure of 
variance persistence and 𝜀𝜀𝑡𝑡−12 is the past squared errors. 
 In order to ensure that the conditional variance is strictly positive, the following inequality 
restrictions are to be imposed: 𝛽𝛽0 ≥ 0,  𝛽𝛽1 ≥ 0,  𝛽𝛽2 ≥ 0. Additionally, to insure stationarity, it 
is also required that 𝛽𝛽1 + 𝛽𝛽2 < 1 where the persistence of variance becomes higher as 𝛽𝛽2 
approaches 1.  
One of the key restrictions of GARCH (p,q) models is that they enforce a symmetric response 
of volatility to positive and negative shocks. GJR specification that captures the leverage effect 
of financial time series could be written as 

ℎ𝑡𝑡 = 𝛽𝛽0+ 𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 + 𝛽𝛽3𝜀𝜀𝑡𝑡−12 (𝜀𝜀𝑡𝑡−1 < 0) 

According to the TARCH model, the conditions 𝛽𝛽0 > 0, 𝛽𝛽1 > 0, 𝛽𝛽1+ 𝛽𝛽3 > 0,  𝛽𝛽2 ≥ 0 are 
sufficient to ensure a strictly positive conditional variance. The asymmetry parameter  𝛽𝛽3 is 
allowed to be of either sign to capture the asymmetric effects. This parameter measures the 
contributions of shocks to both short run persistence (𝛽𝛽1 + 𝛽𝛽3/2) and long run persistence 
(𝛽𝛽1 + 𝛽𝛽2 + 𝛽𝛽3/2). Another interpretation of the relation between the mean inflation and its 
uncertainty allows the conditional variance to be a regressor in the mean equation. This 
GARCH in mean specification denoted GARCH-M add another term in the equation of the 
mean as follows 

πt = µht + ∑ αiπt-in
i=1 + εt 

Where πt refers to inflation, ℎ𝑡𝑡is the conditional volatility. Actually, the relation between 
inflation, volatility and price dispersion has been investigated using GARCH-M specification 
(Grier and Perry, 1996). Their results suggest that inflation volatility is superior to trend 
inflation in investigating price dispersion. Additionally, Wilson (2006) employs an EGARCH-
M model to explain the relation between inflation, its volatility and output gap. Their results 
suggested that higher uncertainty does raise inflation and reduces output, which supports 
Freidman’s (1977) argument. 
Multivariate GARCH models are very similar to their univariate counterparts. The main 
difference between the two versions is that the former also specify equations for how the 
covariances change over time. Therefore, they are useful in analyzing the dynamic relationship 
or co-movements between different economic and financial variables. Several different 
multivariate GARCH formulations have been proposed in the literature; here we present two 
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of them which are diagonal VECH and Dynamic Conditional Correlations (DCC). The VECH 
model is a the first multivariate GARCH model that was proposed by Bollerslev, Engle and 
Wooldridge in 1988. The main problem of the unrestricted VECH model is the existence of a 
very large number of parameter in the conditional variance and covariance matrix. As a result, 
the estimation of VECH becomes quickly infeasible by increasing the number of variables. The 
diagonal VECH model avoids this disadvantage by assuming a diagonal conditional variance 
and covariance matrix. The first order diagonal VECH model can be presented as follows: 

ℎ𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−1 𝜀𝜀𝑖𝑖,𝑡𝑡−1 +  𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖,𝑡𝑡−1                𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖, 𝑗𝑗 = 1,2,3  

where 𝑐𝑐𝑖𝑖𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖and 𝛽𝛽𝑖𝑖𝑖𝑖are parameter of constants, ARCH and GARCH terms respectively. The 

covariance matrix can be expressed asℎ𝑡𝑡 = �
ℎ11𝑡𝑡 . .
ℎ21,𝑡𝑡 ℎ22,𝑡𝑡 .
ℎ31,𝑡𝑡 ℎ32,𝑡𝑡 ℎ33,𝑡𝑡

�, where the elements of the 

diagonal matrix ℎ11𝑡𝑡 ,ℎ22,𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ33,𝑡𝑡 are variances and off diagonal matrix are the time varying 
correlation.  
Concerning Dynamic Conditional Correlations (DCC) models, the constant conditional 
correlation (CCC)model was proposed by Bollerslev in 1990 by estimating the constant 
conditional matrix.  

𝑅𝑅 � =  
1
𝑇𝑇
�𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡′
𝑇𝑇

𝑡𝑡=1

 

Where εit =  ηit/�hit , Q�  is NxN unconditional variance matrix of εt.  Although, the 
conditional variances are assumed to vary, the constant correlation seems to be irrelevant to 
many financial and macro variables where the relationship changes with changing in structural 
breaks or even in changing in policies.  
In 2002, Engle introduced the Dynamic conditional model as nonlinear combination of 
univariate GARCH models through generalizing the CCC model. The DCC model can be 
presented in this form: 

𝐻𝐻𝑡𝑡 = 𝐷𝐷𝑡𝑡𝑅𝑅𝑡𝑡𝐷𝐷𝑡𝑡 
Where  

𝐷𝐷𝑡𝑡 = 𝑎𝑎𝑖𝑖𝑎𝑎𝑑𝑑(ℎ11𝑡𝑡
1
2  , … … . ,ℎ𝑁𝑁𝑁𝑁

1
2 )and each ℎ𝑖𝑖𝑖𝑖𝑡𝑡 is estimated from the traditional univariate GARCH 

model. 

𝑅𝑅𝑡𝑡 = 𝑎𝑎𝑖𝑖𝑎𝑎𝑑𝑑�𝑞𝑞11𝑡𝑡
1
2  , … … . , 𝑞𝑞𝑁𝑁𝑁𝑁

1
2 �𝑄𝑄𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑑𝑑�𝑞𝑞11𝑡𝑡

1
2  , … … . , 𝑞𝑞𝑁𝑁𝑁𝑁

1
2 � 

Where𝑄𝑄𝑡𝑡 = (𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡) is the NxN symmetric positive definite matrix and𝑄𝑄𝑡𝑡 takes the usual 
GARCH representation:  

𝑄𝑄𝑡𝑡 = (1 − 𝛼𝛼 − 𝐵𝐵)𝑄𝑄� + 𝜃𝜃1𝜀𝜀𝑡𝑡−1𝜀𝜀𝑡𝑡−1′ + 𝜃𝜃2𝑄𝑄𝑡𝑡−2 

Where 𝜀𝜀𝑖𝑖𝑡𝑡 =  𝜂𝜂𝑖𝑖𝑡𝑡/�ℎ𝑖𝑖𝑡𝑡 , Q�  is NxN unconditional variance matrix of 𝜀𝜀𝑡𝑡 and both 𝜃𝜃1 and 𝜃𝜃1 are 
non negative coefficients and θ1 + θ1 < 1 . 

3.2 Modelling conditional variance, skewness and kurtosis2: 
Leon, Rubio, and Serna (2005) developed a new approach allowing for modelling time-varying 
variance, skewness and kurtosis jointly as a GARCH process. The employed likelihood 

2 This section is mainly based on LRS (2005) and their development to the GARCH-type model of skewness and kurtosis. 
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function, based on the series expansion of the normal density function is less complicated to 
estimate in comparison with the likelihood function proposed by Harvey and Siddique (1999) 
that assumes non-central t distribution for the model errors. 
First, an inflation model is specified as GARCH (1,1) or TARCH (1,1). Then, a GARCH(1,1) 
specification for both conditional nonconstant skewness and kurtosis is included. Let 
GARCHSK-M refer to the model when the conditional variance is derived by a GARCH 
specification while TARCHSK-M when conditional variance is derived by the TARCH (1,1) 
model. In addition, denote the specification that allows for an asymmetry term in the skewness 
and kurtosis equation by TARCHTSK. Thus, the different models are specified as follows  

Mean equation:       𝜋𝜋𝑡𝑡 = ∑ 𝛼𝛼𝑖𝑖𝜋𝜋𝑡𝑡−𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡≈�0,𝜎𝜎𝜀𝜀2�      (1) 

𝜀𝜀𝑡𝑡 = 𝜂𝜂𝑡𝑡�ℎ𝑡𝑡     ;       𝜂𝜂𝑡𝑡 ≈ (0,1)      𝐸𝐸(𝜀𝜀𝑡𝑡|𝐼𝐼𝑡𝑡−1) ≈ (0,ℎ𝑡𝑡) 

Variance (GARCH):    ℎ𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2𝜀𝜀𝑡𝑡−22 + 𝛽𝛽3ℎ𝑡𝑡−1     (2) 

Variance (TARCH):           ℎ𝑡𝑡 = 𝛽𝛽0+𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 + 𝛽𝛽3𝜀𝜀𝑡𝑡−12 (𝜀𝜀𝑡𝑡−1 < 0)  (3) 

Skewness (GARCH):         𝑠𝑠𝑡𝑡 = 𝛾𝛾0 + 𝛾𝛾1𝜂𝜂𝑡𝑡−13 + 𝛾𝛾2𝑠𝑠𝑡𝑡−1     (4) 

Kurtosis (GARCH):         𝑘𝑘𝑡𝑡 = 𝛿𝛿0 + 𝛿𝛿1 𝜂𝜂𝑡𝑡−14 + 𝛿𝛿2𝑘𝑘𝑡𝑡−1     (5) 

Where 𝜀𝜀𝑡𝑡is the error term, 𝜂𝜂𝑡𝑡is the standardized residuals, ℎ𝑡𝑡 , 𝑠𝑠𝑡𝑡, and 𝑘𝑘𝑡𝑡are conditional 
volatility, skewness and kurtosis corresponding to 𝜂𝜂𝑡𝑡respectively. They establish that 
𝐸𝐸𝑡𝑡−1(𝜂𝜂𝑡𝑡) = 0,𝐸𝐸𝑡𝑡−1(𝜂𝜂𝑡𝑡2) = 1,𝐸𝐸𝑡𝑡−1(𝜂𝜂𝑡𝑡3) = 𝑠𝑠𝑡𝑡and 𝐸𝐸𝑡𝑡−1(𝜂𝜂𝑡𝑡4) = 𝑘𝑘𝑡𝑡. First, two basic models are 
estimated, a GARCH (1,1)-M (equations (1) and (2)) and a TARCH (1,1) (equations (1) and 
(3)). This followed by models with nonconstant higher order moments, GARCHSK (equations 
(1), (2), (4) and (5)). 
They employed Gram-Charlier series expansion of the normal density function and truncated 
at the fourth moment to get the following density function for the standardized errors 

𝑓𝑓(𝜂𝜂𝑡𝑡|𝐼𝐼𝑡𝑡−1) = 𝜙𝜙(𝜂𝜂𝑡𝑡) �1 + 𝑠𝑠𝑡𝑡
3!

(𝜂𝜂𝑡𝑡3 − 3𝜂𝜂3) + 𝑘𝑘𝑡𝑡−3
4!

(𝜂𝜂𝑡𝑡4 − 3𝜂𝜂𝑡𝑡2 + 3)� = 𝜙𝜙(𝜂𝜂𝑡𝑡)𝜓𝜓(𝜂𝜂𝑡𝑡)  (6) 

Where 𝜙𝜙(. )denotes the probability density function (pdf) corresponding to the standard normal 
distribution. Since some parameter estimates may lead to negative value of 𝑓𝑓(. ) due to the 
component 𝜓𝜓(. ), therefore, 𝑓𝑓(. )  is not a real density function. Additionally, the integral of 
𝑓𝑓(. ) on R is not equal to one. Therefore, LRS (2005) introduced a true pdf, by squaring the 
polynomial part 𝜓𝜓(. ), and dividing by the integral of 𝑓𝑓(. ) over R to assure that the density 
integrates to one. The resulting form of pdf is as follows:  

𝑤𝑤(𝜂𝜂𝑡𝑡|𝐼𝐼𝑡𝑡−1) = 𝜙𝜙(𝜂𝜂𝑡𝑡)𝜓𝜓2(𝜂𝜂𝑡𝑡)/𝛤𝛤𝑡𝑡         (7) 
Where 

Γt = 1 +
𝑠𝑠𝑡𝑡2

3!
+

(𝑘𝑘𝑡𝑡 − 3)2

4!
 

Thus, the logarithm of the likelihood function for one observation corresponding to the 
conditional distribution 𝜀𝜀𝑡𝑡 = 𝜂𝜂𝑡𝑡�ℎ𝑡𝑡, whose pdf is �ℎ𝑡𝑡𝑤𝑤(𝜂𝜂𝑡𝑡|𝐼𝐼𝑡𝑡−1)  could be reached after 
deleting the redundant constants as follows 

𝑙𝑙𝑡𝑡 = −1
2
𝑙𝑙𝑎𝑎ℎ𝑡𝑡 −

1
2
𝜂𝜂𝑡𝑡2 + 𝑙𝑙𝑎𝑎�𝜓𝜓2(𝜂𝜂𝑡𝑡)� − 𝑙𝑙𝑎𝑎(Γ𝑡𝑡)        (8) 

One advantage of this likelihood function is the similarity with the standard normal density 
function in addition to two adjustment terms to account for time-varying third and fourth 
moments. What is more, the aforementioned developed density function in equation (7) nests 
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the normal density function (when 𝑠𝑠𝑡𝑡= zero and𝑘𝑘𝑡𝑡= 3). Thus, the restrictions imposed by the 
normal density functions (i.e.,  𝛾𝛾0 = 𝛾𝛾1 = 𝛾𝛾2 = 𝛿𝛿0 = 𝛿𝛿1 = 𝛿𝛿2 = 0) could be tested by 
conducting a likelihood ratio test. 

4. Empirical Results 
4.1 Data and preliminary check 
The data of quarterly CPI, domestic credit and nominal exchange rate are sourced from 
International Financial Statistics (IFS) and cover the period 1957:1 to 2015:1. Inflation data is 
computed as quarterly changes in the logarithm of the CPI. Both the growth rate of domestic 
credit and real exchange rate for the same period have been calculated over the whole period3. 
The period (1957:1 2007:1) will be used for estimation whereas the period (2007:2 2015:1) 
will be used for evaluating the forecasting performance of the employed models. The 
estimation sample is chosen to include the largest number of available observations to provide 
more accurate results. The selected forecasting period is long enough to allow us to compute 
the combination of the competing forecasts. 
Table no. 1 gives the basic descriptive statistics for the data. It is clear that the data is not likely 
to be drawn from normal distribution according to Jarque-Bera (JB) test statistic.  
Prior to estimate models with time-varying higher order moments, the dynamics structure in 
the conditional mean is examined by correlogram of inflation as guidance for selecting the 
appropriate mean specification. According to Brooks (2002), a given autocorrelation 
coefficient is classified as insignificant if it is within range of ±1.96 × 1 √𝑁𝑁⁄ , where N is the 
number of observations. In this case, it would imply that a correlation coefficient is classified 
as significant if it were outside the band of -0.1385 and 0.1385. Exploring the correlogram of 
the data reveals that autocorrelation coefficients are significant up to the seventeenth lag. 
Additionally, the coefficients of partial autocorrelation are significant for the first four lags.  
Therefore, an ARMA process seems appropriate; the information criteria are employed to 
determine the suitable order. However, by estimating different specification for the mean 
equation using different orders of AR and MA terms, criteria choose different models. That is 
while AIC selects an ARMA(1,4) specification of the mean equation, SIC chooses 
ARMA(1,1). Moreover, the values of both criteria show that many different models provide 
almost identical values of the information criteria, which indicates that the chosen models do 
not provide particularly sharp characteristics of the data and other specifications could fit the 
data almost as well. The selected specification includes first and fourth lags of inflation. 
Diagnostic checks reveal the absence of serial autocorrelation amongst the residuals while it 
exists in the sequences of𝜀𝜀𝑡𝑡2, 𝜀𝜀𝑡𝑡3 and 𝜀𝜀𝑡𝑡4. Moreover, ARCH LM test indicates the existence of 
ARCH effects in the residuals. Therefore, a model that assumes nonconstant heteroscedasticity, 
skewness and kurtosis would be more appropriate in modelling inflation. 
As the likelihood function is highly nonlinear, good starting values of the parameters are 
essential. Thus, the models should be estimated in steps, starting from simpler models that are 
nested in the complicated ones. In other words, the estimated parameters of the simpler models 
are used as starting values for more complex ones. Accordingly, this research started modelling 
inflation using basic GARCH(1,1)-M model and TARCH(1,1)-M model to test the asymmetry 
of volatility response to the sign of the shock to inflation. It is worth noting that the variance 
equation is allowed to include two dummies, d74 and d91. The first dummy captures the effects 
of shifting to the open door policy in 1974 that leads to a high increase in the inflation rate. The 
second dummy is included to capture the start of Economics Reform and Structural Adjustment 
Programme (ERSAP) in May 1991. Adding these dummies to the volatility equation allows for 
exploring their effect on the variability of inflation. Furthermore, both dummies are essential 

3 For details of calculation, see the appendix. 
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to insure covariance stationarity in the different models. Moreover, I have estimated a GARCH-
M and TARCH-M model with GED and t- distribution for the error term. This is done to 
compare the effect of choosing a non-normal distribution of the error term with models that 
allow skewness and kurtosis to vary with time. 

4.2 Results 
Table (2) reports the results of the four models, GARCH-M with normal distribution, t- 
distribution and GED distribution, and the GARCHSK-M model with time-varying conditional 
third and fourth moments. Results indicate a significant presence of conditional variance 
persistence as the parameter of lagged volatility is positive and significant across the different 
models at different level of significance. Thus, high conditional volatility leads to higher 
conditional volatility next quarters. Additionally, the coefficient of volatility persistence 
increases when the error term follows both t-distribution and GED distribution. Also, the 
variance persistence increases by allowing for nonconstant conditional skewness and kurtosis 
in GARCHSK-M specification. Concerning the volatility effect in mean equation, the 
estimated parameters are positive and significant across all models. Allowing the error term to 
follow non-normal distribution reduces the magnitude of this parameter in comparison with 
both GARCH-M with GED distribution and GARCHSK-M models. Moreover, allowing the 
error term to follow a t distribution leads to the highest volatility persistence. Concerning the 
conditional skewness, it is found that skewness persistence is positive but insignificant while 
shocks to skewness are negative and significant. Similarly, the conditional kurtosis equation 
indicates that quarters with high kurtosis are followed by quarters with high kurtosis as 
concluded from the positivity and significance of lagged kurtosis parameter. Moreover, the 
coefficient of lagged kurtosis is higher than that of the lagged volatility. Finally, shocks effect 
to kurtosis are the smallest related to the effects of shocks to volatility and skewness. With 
respect to dummies effect in the variance equation, d74 is positive and significant in all cases. 
Additionally, d91 is negative and significant all models except GARCHSK-M. 
Results of models that allow for asymmetries are displayed in table (3). First, the asymmetric 
parameter in the volatility equation,  𝛽𝛽3, is found to be negative and significant in all TARCH 
models with different distributions of the error term. Compared to models without asymmetry 
term, the inclusion of asymmetry term increases the magnitude of volatility persistence in all 
cases. Secondly, the shocks to inflation 𝛽𝛽1is found to be significant in the all TARCH-M 
models where the highest magnitude is in the model that assumes a normal distribution for the 
error term. Additionally, the persistence parameter in the variance equation is significant in all 
models with the highest magnitude in TARCH-M with t distribution for the error term.  In 
addition, the parameter of GARCH in mean is significant in all TARCH models.  
Concerning the specification of the models, the Ljung-Box Q-statistics for the sequence of 
𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡2, 𝜀𝜀𝑡𝑡3and𝜀𝜀𝑡𝑡4 are insignificant for lag length even larger than 20, which implies the absence 
of any serial correlation in these series. Furthermore, ARCH LM tests indicate the absence of 
any further ARCH effects in the standardized residuals. To choose the best model, SIC criterion 
is set to be equal to ln(𝐿𝐿𝐿𝐿𝐿𝐿) − (𝑞𝑞 2⁄ )ln (𝑁𝑁), where q is the number of estimated parameters, 
N is the number of observations, and LML is the value of the log likelihood function using the 
q estimated parameters. Then, the best model is the one with the highest SIC. According to SIC 
criterion, the specification in which the third and the fourth moments, GARCHSK-M, are 
allowed to be time-variant is the best model.  
To sum up, these results support Friedman (1977) hypothesis concerning the positive 
correlation between inflation and its uncertainty, as volatility persistence and GARCH in mean 
coefficients are significant in all models except GARCH-M with GED distribution. 
Additionally, the results show the evidence of positive skewness that is consistent with Balke 
and Wynne (1996) that the mean-skewness correlation could persist even in the long-run. 

 9 



 

Finally, the results of the two multivariate GARCH models are presented in table (4)4. We 
employed two financial variables: the growth rate of domestic credit and real exchange rate. 
These variables are chosen to figure out the dynamic relationship between inflation and those 
variables that might help the policymakers in conducting their monetary policy given the high 
importance of the effects of these variables on inflation. Concerning the DCC model, the results 
of conditional variances of univariate models are presented where both stationarity and 
nonnegativity assumptions are met. In addition, the bottom part of the table displays the DCC 
parameters, the effect of past standardized shocks θ1 = 0.073 and lagged dynamic conditional 
correlation θ2 = 0.736. Both parameter estimates are significant, which indicates that the 
variables are related together in multivariate dynamic relationship. The diagnostic tests 
revealed that these models are free from autocorrelation and ARCH Effects. 
Figure (2) shows the correlation between inflation in one side and both growth of domestic 
credit and exchange rate on the other according to the DCC model. It is clear that the relation 
between inflation and the growth of domestic credit is highly dynamic.  The correlation 
between the two variables has decreased in late 1965 after the industrial plan. Also, it declined 
again with the shift to the open door policy in late 1974. Then, the correlation was strengthened 
after the implementation of ERSAP in 1991. With the reforms executed by the central bank in 
2003, the correlation reached a minimum but the correlation started to increase again after the 
announcement of the central bank of Egypt regarding its intention to move to inflation targeting 
regime in mid-2005 after the starting of inflation targeting policy. Overall, the positive sign for 
the correlation refers to the positive relationship between growth rateof credit and inflation 
level. 
Concerning the correlation between inflation and real exchange rate growth, there is a positive 
strong relationship between inflation and real exchange rate which implies that more 
depreciation in the value of Egyptian pound leads to increasing inflation rate. This is especially 
important since the imports of food and raw materials represent a high portion of Egypt’s 
imports. Additionally, the correlation between inflation and real exchange rate was increased 
in with the movement to the open door policy and in 1991 with the launch of ERSAP. Finally, 
this correlation is significantly increased after the float of the Egyptian pound in 2003, which 
resulted in a high devaluation of the value of the pound.  
With respect to the VECH model, the coefficients of ARCH and GARCH terms are 
significantly differ from zero, which indicates the existence of a strong multivariate GARCH 
relationship between the three variables. Figure (3) shows the time plot of covariances between 
inflation and both growth of domestic credit and real exchange rate according to VECH model.  
The covariance between inflation and growth of domestic credit is highly volatile in most of 
the time period. Additionally, this covariance relation increased sharply in 1981 with the 
banking crisis in Egypt but this relation was less volatile starting from late 1990s resulting from 
the success of monetary policy in controlling it. On the other hand, the figure of covariance 
between inflation and real exchange rate growth indicates a massive increase in the covariance 
after ERSAP that witnessed a huge devaluation in the value of the Egyptian pound.  

4.3 Diagnostic tests 
The first comparison procedure is comparing the behavior of the standardized residuals 
obtained from different models. The standardized residuals of GARCHSK-M model have the 
lowest standard deviation of 0.75 in comparison with other model,s which implies that the 
standardized residuals series from models with time-varying higher order conditional moments 
have a lower dispersion than those obtained from time-invariant conditional skewness and 
kurtosis. On the other hand, GARCH-M model with normal distribution has the lowest 

4 For preliminary examination of the included variables, see the appendix.  
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skewness whereas TARCH-M model with normal distribution has the smallest kurtosis. The 
second procedure of comparison is to assess the behavior of conditional variances obtained 
from the different models. The descriptive statistics of these conditional variances are presented 
in table (6). The volatility of GARCHSK-M model has the lowest standard deviation compared 
to other models. On the other hand, TARCH-M with GED has the smallest skewness while 
TARCH-M with t distribution has the lowest kurtosis. Finally, employing the likelihood ratio 
test to compare GARCH-M and GARCHSK-M, reported in table (7), indicates the rejection of 
the null hypothesis that the restricted density (i.e., the normal density function) is the correct 
density.  

4.4 Forecasting performance 
Table (8) displays the different measures used to assess the predictive power of the employed 
models.  The forecast error statistics RMSE depend on the scale of the dependent variable. 
Thus, it is a relative measure to compare forecasts across different models. According to this 
criterion, the smaller the error, the better is the forecasting ability of the related model. With 
respect to the Theil inequality coefficient, it must lie between zero and one, where zero is a 
sign of a perfect fit. Additionally, the bias and variance proportion are indications of how far 
the mean and variation of the forecast are from the mean and the variance of the actual series 
while the covariance proportion measures the remaining unsystematic forecasting errors. These 
different proportions must sum up to one where smaller bias and variation proportion refers to 
a better forecasts. Thus, most of the bias should be concentrated on the covariance proportion. 
Another forecasting comparison procedure is to run encompassing tests. The idea behind using 
the encompassing test is as follows: suppose that we have two alternative sets of forecasts f1 
and f2 of a variable where the performance of f1 outperforms f2 according to some criterion, 
say RMSE. Then, if the f2 contains no useful marginal information, than it is said that f1 
encompasses f2. It follows that if f2 is not encompassed by f1, this means that f2 may provide 
some marginal information that is not contained in the better forecast. In this case, the two 
forecasts could be combined together to form a combined forecast. To eliminate the forecasts 
that are encompassed by the best projection, the models should be ranked according to their 
predictive power according to RMSE. Then, select the best model with the smallest RMSE and 
successively test whether the best model forecast encompasses other models using Diebold and 
Mariano (DM) (1995) test. If the best model encompasses the alternative model at some 
significance level α, then the encompassed model should be eliminated from the list of models. 
The test is repeated with all alternative models according to their ranking (Kışınbay, 2007). 
The test statistic developed by Diebold and Mariano (1995), abbreviated as DM, is used to test 
for equal predictive ability of the two competing forecasts. It considers a sample of loss 
differential series 𝑎𝑎𝑡𝑡, defined as 𝑎𝑎𝑡𝑡 = 𝐿𝐿(𝑒𝑒1𝑡𝑡) − (𝑒𝑒2𝑡𝑡) where L is some arbitrary loss function5 
like RMSE , eit is the t-step ahead forecasts of the model i = 1, 2 and t = 1, 2,…….,T. Equal 
predictive accuracy amounts to 𝐸𝐸(𝑎𝑎𝑡𝑡) = 0, and the test depends on the observed sample mean 
�̅�𝑎 = 1

𝑇𝑇
∑ 𝑎𝑎𝑡𝑡𝑇𝑇
𝑡𝑡=1 . Assuming the covariance stationarity in the loss deferential series, the DM test 

statistic is asymptotically normally distributed under the null hypothesis of equal predictive 
accuracy of competing forecasts. The test statistic is as follows 

𝐷𝐷𝐿𝐿 = 𝑑𝑑�

�𝑉𝑉�(𝑑𝑑�)
           (9) 

Where V��d�� is a consistent estimate of the asymptotic variance of d, and assuming that τ-step-
ahead forecasts exhibit dependence up to order τ−1, it is obtained as: 

5loss function need not be quadratic or even to be symmetric, and forecast errors can be non –Gaussian, nonzero mean, serially 
correlated and contemporaneously correlated.  
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𝑉𝑉���̅�𝑎� ≈ 1
𝑇𝑇

(𝛾𝛾0 + 2∑ 𝛾𝛾𝑖𝑖𝜏𝜏−1
𝑖𝑖=1 )        (10) 

Where γi is the ith autocovariance of d�, estimated by 𝛾𝛾�𝑡𝑡 = ∑ �𝑎𝑎𝑡𝑡 − �̅�𝑎��𝑎𝑎𝑡𝑡−𝑖𝑖 − �̅�𝑎�𝑇𝑇
𝑡𝑡=𝑖𝑖+1 . 

Table (9) presents the results of RMSE for the out-of-sample (2007:2 to 2015:1) period. The 
forecast evaluation is run recursively for different forecasting horizons ranging from 1 quarter 
to 8 quarters, as inflation in actual policy conduct is likely to be forecasted in a two-year 
horizon. According to RMSE, Overall, the performance of different models in forecasting 
inflation varies significantly with different forecasting horizons. Also, univariate models 
provide better forecast over all horizon except the very short horizon. That is to say, 
Multivariate GARCH model with DCC is the best model in the very short horizon (1 step), 
where its forecasting performances is much lower over longer horizons. On the other hand, 
TARCH-M model performs badly over short horizon while it is the best model in predicting 8 
step ahead forecasts.  
On the other hand, the TIC of GARCHSK-M model over all forecast horizons is the lowest and 
below 0.34 implying a good forecasting power. Also, the variance proportion is the lowest over 
all horizons except H=3. This indicates that GARCHSK-M model succeeded in tracking the 
actual variance path in all horizons except the 3 step-ahead forecast. Concerning the bias 
proportion, results show that in most of horizons, TARCH-M model with normal distribution 
has the minimum bias implying that the mean of the forecast can moderately track the mean of 
actual data over the forecasted period. Finally, concerning the covariance proportion, TARCH-
M model with normal distribution has the greatest value for horizons 1, 2, 3, 6 and 7, whereas 
GARCHSK-M model has the highest CP for horizons 4 and 5. This implied that these two 
models moderately tracked both mean and a variance path in these horizons and the most of 
bias is due to unsystematic errors. Therefore, however, GARCHSK-M is not selected by RMSE 
over any forecasting horizon, it is regarded as the best model according to TIC. 
The abovementioned results indicate that there is no unique model that performs well at all 
forecasting horizons. Therefore, at each horizon, the comparisons between the forecasts of the 
best model and its alternative models are done bilaterally using the DM (1995) forecast 
encompassing test. Results of the DM test are displayed in table (11), they show that the null 
hypothesis of equal forecasting accuracy cannot be rejected at 5% level of significance for all 
models at all forecasting horizons. This implies that all competing models contain marginal 
information that is not included in the best model according to the RMSE criterion. 
Consequently, all models could be combined together to produce a single forecast, which is 
done in section 5. 

5. Forecast Combination 
As indicated earlier, different parametric models give different forecasts, and choosing the best 
model according to some criterions will result in discarding some projections, which may have 
some marginal information that is not contained in the best forecast. Therefore, the inclusion 
of these predictions to form a combined forecast may provide more accurate results. Especially, 
it is empirically evidenced that combining forecasts is an efficient approach to improve the 
accuracy of the forecasting (Clemen, 1989; Armstrong, 1989). Therefore, the current section 
applies forecast combination techniques to form a combined forecast. The curial issue in 
combining forecasts is to find the optimal weight that should be assigned to each individual 
model to minimize a specific loss function. The current paper applies three different procedures 
of choosing the optimal weights in combining forecasts, namely, simple average, Bayesian 
Model Averaging (BMA) and Dynamic Model Averaging (DMA).  
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5.1 Approaches of forecast combinations 
Suppose that we have k available forecasts  𝑦𝑦�𝑇𝑇+ℎ,1,𝑦𝑦�𝑇𝑇+1,2, … . ,𝑦𝑦�𝑇𝑇+1,𝑘𝑘 , which are coming from 
k different models to compute a forecast of 𝑦𝑦𝑇𝑇+ℎ. Let𝑦𝑦�𝑇𝑇+ℎ =
 𝑑𝑑�𝑦𝑦�𝑇𝑇+ℎ,1,𝑦𝑦�𝑇𝑇+ℎ,2, … ,𝑦𝑦�𝑇𝑇+ℎ,𝑘𝑘,𝑤𝑤𝑖𝑖,𝑇𝑇+ℎ� be the combined point forecast as a function of the 
underlying single forecasts from 𝑦𝑦�𝑇𝑇+ℎ,1 to  𝑦𝑦�𝑇𝑇+ℎ,𝐾𝐾,  the forecast combination scheme g , and 
the vector of the parameters of the combination 𝑤𝑤𝑇𝑇+ℎ.  

The values of the optimal combination weights 𝑤𝑤�𝑇𝑇+1 could be obtained by minimising the 
following loss function: 

𝑚𝑚𝑖𝑖𝑎𝑎𝑤𝑤𝑇𝑇+ℎΕ[𝐿𝐿(𝑒𝑒𝑇𝑇+ℎ(𝑤𝑤𝑇𝑇+ℎ)|𝑦𝑦�𝑇𝑇+ℎ,1, … ,𝑦𝑦�𝑇𝑇+ℎ,𝑘𝑘]        (11) 

The function𝑒𝑒𝑇𝑇+h = 𝑦𝑦𝑇𝑇+h − 𝑑𝑑(𝑦𝑦�𝑇𝑇+ℎ,1, . . , 𝑦𝑦�𝑇𝑇+1,𝑘𝑘,𝑤𝑤�𝑇𝑇+ℎ)  is the combined forecast error, and L 
is the loss function that is assumed, for simplicity, to be dependent on the forecast error. In 
most cases there is no closed form solution of equation (11), but analytical results may be 
computed by imposing restrictions on the loss function and making distributional constraints 
on the forecast errors. Often it is simply assumed that the objective function is the MSE loss 
function: 

𝐿𝐿(𝑒𝑒𝑇𝑇+1(𝑤𝑤𝑇𝑇+1 )) = 𝜃𝜃(𝑦𝑦�𝑇𝑇+ℎ −  𝑦𝑦𝑇𝑇+ℎ)2𝜃𝜃 > 0       (12) 
For this case, the combined forecast chooses a combination of the individual forecasts that best 
approximates the conditional expectation, 𝐸𝐸(𝑒𝑒𝑦𝑦𝑇𝑇+1|𝑦𝑦�𝑇𝑇+1). In the all approaches that we apply 
we assume the MSE loss function and we fix𝜃𝜃 = 1. Different distributional restrictions, for 
example, assuming a time varying 𝜃𝜃, imply different estimation techniques in equation (11). 
To calculate the optimal weights that should be assigned to competing models, three different 
approaches have been used. The approach is Equal weight (EQ), which is the simplest method 
for calculating the combination weights as the mathematical average of all available individual 
forecasts. Despite its simplicity, many studies have found that it works better than many 
complicated techniques for calculating combination weights. On the other hand, it can perform 
worse than even individual competitors in the case of considering many poor forecasting 
elements. The formula of calculating EQ is given in equation (13) 

𝑤𝑤𝑖𝑖 = 1
𝑘𝑘

            (13) 

where  𝑤𝑤𝑖𝑖 is the weights for all models, and k is the number of the considered models.  
The second employed technique for combination is Bayesian model averaging (BMA). 
Assuming k potential models and only one of these models is the true model; firstly, we define 
the prior probability that associated for each of the available models. Secondly, we estimate 
the posterior distribution as the weighted average of the conditional predictive densities for the 
included models. The predictive density of 𝑦𝑦𝑡𝑡+ℎ, given the available observed data till the time 
t , 𝐹𝐹𝑇𝑇, is estimated using the weighted average of the conditional predictive densities given the 
available models with the posterior probabilities by:   

𝑝𝑝(𝑦𝑦𝑇𝑇+ℎ/𝐹𝐹𝑇𝑇)  =   ∑ 𝑝𝑝(𝑚𝑚𝑖𝑖/𝐹𝐹𝑇𝑇) 𝑝𝑝(𝑦𝑦𝑇𝑇+ℎ/𝐹𝐹𝑇𝑇,,𝑚𝑚𝑖𝑖)𝐾𝐾
𝑖𝑖=1       (14) 

where𝑝𝑝(𝑚𝑚𝑖𝑖/𝐹𝐹𝑇𝑇) is the model 𝑚𝑚𝑖𝑖 posterior probability and 𝑝𝑝(𝑦𝑦𝑇𝑇+ℎ/𝐹𝐹𝑇𝑇,,𝑚𝑚𝑖𝑖) is the conditional 
predictive density conditional of the model 𝑚𝑚𝑖𝑖 and the function 𝐹𝐹𝑇𝑇. The conditional predictive 
density is calculated given the function 𝐹𝐹𝑇𝑇 and the model 𝑚𝑚𝑖𝑖 as: 

𝑝𝑝(𝑦𝑦𝑇𝑇+ℎ/𝐹𝐹𝑇𝑇,,𝑚𝑚𝑖𝑖) =  ∫ 𝑝𝑝(𝑦𝑦𝑇𝑇+ℎ/𝜃𝜃𝑖𝑖 ,𝐹𝐹𝑇𝑇 ,𝑚𝑚𝑖𝑖)𝑝𝑝(𝜃𝜃𝑖𝑖/𝐹𝐹𝑖𝑖,𝑚𝑚𝑖𝑖)𝑎𝑎𝜃𝜃𝑖𝑖       (15) 

where ∫ 𝑝𝑝(𝑦𝑦𝑇𝑇+ℎ/𝜃𝜃𝑖𝑖 ,𝐹𝐹𝑇𝑇 ,𝑚𝑚𝑖𝑖) is the conditional predictive density of 𝑦𝑦𝑇𝑇+ℎ  given 𝜃𝜃𝑖𝑖, 𝐹𝐹𝑇𝑇and 𝑚𝑚𝑖𝑖. 
Then, the posterior probabilities of model  Mi can be estimated by: 
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𝑝𝑝(𝐿𝐿𝑖𝑖/𝐷𝐷) =  𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝐷𝐷/𝑀𝑀𝑖𝑖) 𝑃𝑃(𝑀𝑀𝑖𝑖)
∑ 𝑃𝑃(𝐷𝐷/𝑀𝑀𝑖𝑖) 𝑃𝑃(𝑀𝑀𝑖𝑖)𝑘𝑘
𝑖𝑖=1

        (16) 

where D is specified data set and P(Mi) is the prior probability for the model Mi . Then, the 
likelihood of the model Mi can be calculated: 

𝑃𝑃(𝐷𝐷/𝐿𝐿𝑖𝑖) = ∫𝑃𝑃(𝐷𝐷/𝜽𝜽𝑖𝑖 ,𝑴𝑴𝑖𝑖) 𝑃𝑃(𝜽𝜽𝑖𝑖/𝑴𝑴𝑖𝑖)𝑎𝑎𝜽𝜽𝑖𝑖       (17) 

Sinceθi is the vector of parameters that associated for model Mi  and 𝑃𝑃(𝜃𝜃𝑖𝑖/𝐿𝐿𝑖𝑖) is the vector of 
prior density of θi under model 𝐿𝐿𝑖𝑖.  we will use the posterior probability for each to get the 
individuals combination weights  𝑤𝑤𝑖𝑖.  Under the non-informative from, we can assume equal 
prior probabilities for all models as  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷i = 1

k
5F

6.   

The final combination method is Dynamic Model Averaging (DMA) which is developed by 
(Raftery et al., 2010) and it has been applied to forecast inflation by Koop and Korobilis (2012). 
It combines forecasts from different models based on the predictive likelihood of each model 
as approximate to the past forecasting performance.  
The DMA allows for the weights associated to the different models to vary over time in contrast 
to the known Bayesian Model Averaging (BMA) approach which yields constant weights for 
the different models.   Koop and Korobilis proved that DMA approach with different constant 
coefficients models is a good substitute for adopting time varying coefficients models.   
In order to illustrate the idea of DMA, consider the cases of n models are available for 
forecasting. Also, let 𝐿𝐿𝑡𝑡 ∈ {1, … … , 𝑎𝑎}be one of these available models at time t and the 
information set available till the point s is Xs = (X1, … , Xs)′. Hence, the weight is defined in 
terms of the probability that this model M engages at time t conditional on information set up 
to s is: 

𝑤𝑤𝑡𝑡/𝑠𝑠,𝑚𝑚 = 𝑝𝑝𝑓𝑓(𝐿𝐿𝑡𝑡 = 𝑚𝑚/𝑋𝑋𝑠𝑠)        (18) 

In addition to, a recursive algorithm that DMA depends on to calculate 𝑤𝑤𝑡𝑡/𝑡𝑡,𝑚𝑚  and 𝑤𝑤𝑡𝑡/𝑡𝑡−1,𝑚𝑚 .  
It also uses a specific approach call “forgetting factor”, α. This approach helps to ease the 
computation burden when there are a large number of available models.The predictive 
likelihood can be calculated for each model given the predictive density for each model. Then, 
following updates can be calculated by using the predictive density information, as follows:  

𝑤𝑤/𝑡𝑡,𝑚𝑚 = 𝑤𝑤𝑡𝑡/𝑡𝑡−1,𝑝𝑝𝑚𝑚(𝑋𝑋𝑡𝑡/𝑋𝑋𝑡𝑡−1)
∑ 𝑤𝑤𝑡𝑡/𝑡𝑡−1,𝜄𝜄𝑝𝑝𝜄𝜄(𝑋𝑋𝑡𝑡/𝑋𝑋𝑡𝑡−1)𝑘𝑘
𝑡𝑡/𝑡𝑡−1

        (19) 

In case, we are assuming that wt/t−1,m is known and with assuming some initial starting values 
w0/0,m. We can calculate the other elements in the system: wt/t,m and wt/t−1,m for the models 
m=1,.......,n.  

In regards of the missing quantitywt\t−1,m, Raftery et al. (2010) used the following 
approximation:  

𝑤𝑤𝑡𝑡/𝑡𝑡−1,𝑚𝑚 = 𝑤𝑤𝑡𝑡−1
𝛼𝛼 /𝑡𝑡−1,𝑚𝑚

∑ 𝑤𝑤𝑡𝑡−1
𝛼𝛼 /𝑡𝑡−1,𝜄𝜄𝑘𝑘

𝑡𝑡=1
          (20) 

The weights assigned to different models at each current period t will be conditional on this 
model performance in the recent past periods. In which length is the "recent past" is, this is 
determined by the forgetting factor, λ. We have depends on the benchmark value for the 
forgetting factor in Raftery et al. (2010), λ = 0.99 which implies that in case of quarterly data 
the last 5 years performance receives around 80% in the weighting criteria.  

6All Bayesian weights and calculations are estimated by using BMS package inside R software.  
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5.2 Combination results 
 The main aim for any forecasts combination process is to improve the accuracy of the 
individual forecasts, hence the good combination scheme should be characterized by two 
features: the first one should beat all individual models forecasting accuracy and the second 
should perform well in comparison to the other combination methods.  In our analysis, we will 
compare the forecasting performance between the different forecasting combination schemes 
and the best model in terms of MSE and RMSE. Table (12) reports MSE and RMSE for all 
combination methods and table (13) presents the weights associated to the individual models 
according to the different static combinations schemes where the time varying weights of DMA 
technique corresponding to three different forecasting horizons, 1 step, 4 steps, and 8 steps, are 
presented in figure (4 to 6). In general, we can observe that the dynamic combination technique 
by DMA dominates the best model and all other static combination schemes for all forecasting 
horizons except the 3 step forecast where EQ is the best combination method. Finally, with 
exclusion of the third forecasting horizon, we did not face the famous puzzle of combination 
forecasts that equal weight approach outperforms more complicated combination methods. The 
reason behind that is we have initial heterogeneous models where each model has its specific 
information and some specific features 

6. Conclusion and Policy Implications 
Inflation forecasts are highly important in the actual management of monetary policy, 
especially under an inflation targeting regime. Therefore, central banks must have accurate 
inflation forecasts. Additionally, since understanding the risks included in inflation more fully 
would improve anti-inflation policy settings, a density forecast could help improving inflation 
forecasting. Therefore, the current paper applied the methodology proposed by Leon, Rubio 
and Serna (2005) for modelling the relationship between inflation and time-varying conditional 
heteroscedasticity, skewness and kurtosis. 
The estimated univariate models include GARCH-M and TARCH-M models assuming that the 
error term follows normal, student t, and GED distributions. Additionally, GARCH-M model 
is extended to allow conditional skewness and kurtosis to follow GARCH type structure 
assuming a Gram-Charlier series expansion for the normal density function. Moreover, two 
multivariate GARCH models, diagonal VECH and DCC are estimated. Results indicate the 
existence of significant persistence in conditional variance, skewness and kurtosis. 
Additionally, comparing different models through examining the behavior of standardized 
residuals, and conducting the likelihood ratio test revealed that GARCHSK-M model 
outperforms other models with time invariant volatility, skewness and kurtosis. Additionally, 
we assessed the prediction ability of these models for different forecasting horizons ranging 1 
quarter to 8 quarters, as inflation in actual policy conduct is likely to be forecasted in a two-
year horizon. According to Root Mean Square (RMSE) criterion, GARCHSK-M has lower 
forecasting accuracy compared to the basic univariate models. In contrast, GARCHSK-M 
outperforms all competing models in terms of Theil Inequality Criterion (TIC) over different 
forecasting horizons. Moreover, results of an encompassing test introduced by Diebold and 
Mariano (1995) showed that the all competing models are not encompassed by the best Model 
according to RMSE over the different forecasting horizons. This implies that these models 
could be combined together to form a single forecast. The combination of forecasts are done 
using three different combination methods: equal weights, BMA, Dynamic combination 
Average (DMA). Based on these three approaches, there is an evident that the combined 
forecasts outperform the prediction of the best forecast of individual models. 
Based upon conclusions drawn above, the Central bank of Egypt should take into consideration 
the higher order conditional moments of inflation in constructing their future forecasts. In 
addition, the use of combined forecast to form the inflation predictions is highly recommended. 
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Moreover, the positive correlation between inflation and its higher order moments suggests 
that the Central Bank of Egypt should aim at achieving low average inflation rate to decrease 
the negative consequences of uncertainty.  
Finally, since the likelihood function is highly nonlinear, the employed methodology is limited 
by the fact that using different optimization algorithms could lead to different estimates and 
standard errors. Another limitation is that the model is very sensitive to the choice of the 
starting values. Specifically, setting the initial values of the parameters to zero or close to zero 
would result in the existence of many local maximum of the likelihood function. Therefore, 
special care should be taken by setting the initial values away from zero to avoid the possibility 
of various local maxima. This research could be extended in many ways, such as the inclusion 
of other financial variables that might help in understanding the behavior of inflation dynamics, 
such as money supply and interest rate. In addition, applying more recent techniques of forecast 
combination is encouraged.  
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Figure 1: Quarterly Inflating Rate for The Period (1957:1 to 2007:1) 
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Figure 2: The Dynamic Correlation between Inflation and Both Growth of Domestic 
Credit and Exchange Rate 
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Figure 3: Covariance between Inflation and Both Growth of Domestic Credit and Real 
Exchange Rate from VECH 
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Figure 4: Weights Assigned to Different Models for One Step Ahead Forecast 
According to DMA 

 
 
 
 

Figure 5: Weights Assigned to Different Models for Four Step Ahead Forecast According 
to DMA 
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Figure 6: Weights Assigned to Different Models for One Step Ahead Forecast 
According to DMA 

 
 
 
 
 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
07

q2
20

07
Q

3
20

07
Q

4
20

08
Q

1
20

08
Q

2
20

08
Q

3
20

08
Q

4
20

09
Q

1
20

09
Q

2
20

09
Q

3
20

09
Q

4
20

10
Q

1
20

10
Q

2
20

10
Q

3
20

10
Q

4
20

11
Q

1
20

11
Q

2
20

11
Q

3
20

11
Q

4
20

12
Q

1
20

12
Q

2
20

12
Q

3
20

12
Q

4
20

13
Q

1
20

13
Q

2

GN

GT

GG

TN

TT

TG

SK

DCC

BK

GARCH-M (t-dist) 

GARCH-M( GED) 

TARCH-M 

TARCH-M (t-dist) 

TARCH-M( GED) 

GARCHSK-M 

MGARCH DCC 

MGARCH VECH 

 21 



 

Table 1: Descriptive Statistics of the CPI Inflation 1957:1 to 2007:1) 
Mean  0.020112 
Median  0.011963 
Maximum  0.115602 
Minimum -0.032790 
Std. Dev.  0.023657 
Skewness  1.159574 
Kurtosis  4.437183 
JB  62.03284 
JB- p value  0.000000 

 
Table 2: Estimates of GARCH-M and GARCHSK-M Model for Inflation (1959:2 
2007:1): 

Mean equation:πt =  µht+α1 πt-1 + α2πt-4 + εt 
Variance equation:      ℎ𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 + 𝜅𝜅1𝑎𝑎74 + 𝜅𝜅2𝑎𝑎91 
Skewness Equation:  𝑠𝑠𝑡𝑡 = 𝛾𝛾0 + 𝛾𝛾1𝜂𝜂𝑡𝑡−13 + 𝛾𝛾2𝑠𝑠𝑡𝑡−1 
Kurtosis Equation:      𝑘𝑘𝑡𝑡 = 𝛿𝛿0 + 𝛿𝛿1 𝜂𝜂𝑡𝑡−14 + 𝛿𝛿2𝑘𝑘𝑡𝑡−1 
Model 
 

 GARCH-M GARCH-M (t-dist) GARCH-M (GED) GARCHSK-M 
 estimate p-value  estimate p-value estimate p-value 

 
Mean 
Equation 

µ 10.70487 0.0131 9.962059 0.0122 15.46914 0.0014 15.84766 0.0000 
α1 0.362465 0.0002 0.357985 0.0000 0.312845 0.0003 0.397144 0.0000 
α2 0.286111 0.0000 0.294950 0.0000 0.278038 0.0000 0.305546 0.0000 

 
Variance 
equation 

β0 9.61×10-5 0.0001 6.52×10-5 0.0349 8.52×10-5 0.0039 0.000138 0.0000 
β1 0.507907 0.0000 0.449118 0.0029 0.354863 0.0005 0.393293 0.0000 
β2 0.186655 0.0948 0.418660 0.0012 0.294235 0.0289 0.255495 0.0000 
k1 0.000376 0.0321 0.000383 0.0861 0.000389 0.0268 0.000474 0.0000 
k2 -0.00043 0.0166 -0.000436 0.0617 -0.000435 0.0165 0.000210 0.0000 

 t-dist   4.651882 0.0093     
 
Skewness 
Equation 

γ0     -0.147913 0.0000 
γ1     -0.049117 0.0000 
γ2     0.005199 0.3382 

 
Kurtosis 
Equation 

δ0     0.972210 0.0000 
δ1     0.010863 0.0000 
δ2     0.588909 0.0000 

Log-likelihood 511.8632 518.4956 509.9896 928.0167 
SIC 502.73 508.2005 500.8564  912.0178 
Ljung-Box Q-stat. 
𝜀𝜀𝑡𝑡(lag 10) 7.2396 0.612 5.7162 0.839 6.4304 0.778 9.2325 0.510 
𝜀𝜀𝑡𝑡2 (lag 10) 6.0200 0.814 10.070 0.434 7.6228 0.666 6.2244 0.796 
𝜀𝜀𝑡𝑡3 (lag 10) 4.2962 0.933 6.2089 0.797 3.9793 0.948 6.6910 0.754 
𝜀𝜀𝑡𝑡4 (lag  10) 4.3453 0.930 5.0324 0.889 2.9250 0.983 5.6119 0.847 

Notes: All models are estimated using ML estimation using Marquardt algorithm.  Significant p-values are indicated by bold. t-dist. is the 
estimation of degrees of freedom of t-distribution, GED parameter is set to equal 1.5. 
 
Table 3: Estimates of TARCH-M Models with Different Distribution (1959:2 2007:1): 
Mean equation:             𝜋𝜋𝑡𝑡 =  𝜇𝜇ℎ𝑡𝑡+𝛼𝛼1 𝜋𝜋𝑡𝑡−1 + 𝛼𝛼2𝜋𝜋𝑡𝑡−4 + 𝜀𝜀𝑡𝑡 
Variance equation:     ℎ𝑡𝑡 = 𝛽𝛽0+𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 + 𝛽𝛽3𝜀𝜀𝑡𝑡−12 (𝜀𝜀𝑡𝑡−1 < 0) + 𝜅𝜅1𝑎𝑎74 +  𝜅𝜅2𝑎𝑎91 

Model  TARCH-M TARCH-M (t-dist) TARCH (GED) 
 estimate p-value estimate p-value estimate p-value 

 
 
Mean equation 

µ 19.72773 0.0002 8.029947 0.0561 26.65659 0.0002 

α1 0.254268 0.0017 0.390537 0.0000 0.171016 0.0921 
α2 0.298124 0.0000 0.385944 0.0000 0.272075 0.0000 

 
 
Variance 
equation 

β0 0.000111 0.0021 5.13×10-5 0.0124 9.17E-05 0.0072 
β1 0.772270 0.0016 0.583225 0.0002 0.503393 0.0030 
β2 0.197225 0.0559 0.587646 0.0000 0.324831 0.0520 
β3 -0.702725 0.0081 -0.467132 0.0269 -0.495986 0.0063 
k1 0.000416 0.0015 0.000172 0.0000 0.000428 0.0156 
k2 -0.000481 0.0003 -0.000222 0.0000 -0.000466 0.0114 

t-dist   1.230947 0.0000   
Log-likelihood  509.0635 511.7202 513.3198 
SIC 498.7886 501.4453 503.0449 
Ljung-Box Q-stat.     
𝜀𝜀𝑡𝑡(lag 10) 9.5904 0.477 6.1276 0.804 6.4377 0.777 
𝜀𝜀𝑡𝑡2 (lag 10)                                    8.1273 0.616 9.5734 0.479 6.7644 0.747 
𝜀𝜀𝑡𝑡3 (lag 10)                                    7.9010 0.639 6.1072 0.806 4.5032 0.922 
𝜀𝜀𝑡𝑡4 (lag 10)                                    7.6536 0.663 4.5840 0.917 5.5914 0.848 

Notes: All models are estimated using ML estimation using Marquardt algorithm.  Significant p-values are indicated by bold.t-dist. is the 
estimation of degrees of freedom of t-distribution 
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Table 4: Variance and Covariance Estimates of MGARCH Models(1959:2 2007:1): 
For DCC model: Mean equation: each variable is regressed on a constant, AR(1) term and a dummy of ERSAP. 
Variance equation:ℎ𝑡𝑡 = 𝛽𝛽0+𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 + 𝛽𝛽3𝜀𝜀𝑡𝑡−12 (𝜀𝜀𝑡𝑡−1 < 0) 
For Diagonal VECH: Mean equation: VAR system includes 5 lags as suggested by AIC, LR and FPE criterions 
Variance equationℎ𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−1 𝜀𝜀𝑖𝑖,𝑡𝑡−1 +  𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖,𝑡𝑡−1                𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖, 𝑗𝑗 = 1,2,3  

 DCC models  VECH model 
 Domestic credit inflation Exchange rate    
 estimate p-value  estimate p-value coef estimate p-value 
β0 0.000423 0.0366 0.00025 0.0001 0.000181 0.0165 𝑐𝑐11 0.000421 0.0146 
β1 0.44730 0.0250 0.25704 0.0253 0.192352 0.311 𝑐𝑐22 0.000140 0.0072 
β2 0.55812 0.000 0.56328 0.0003 0.679877 0.000 𝑐𝑐33 0.000409 0.0000 
β3 -0.43214 0.0652 -0.505 0.0001 -0.2358 0.240 𝛼𝛼11 0.186230 0.0759 

       𝛼𝛼12 0.414618 0.0005 
       𝛼𝛼13 0.526830 0.0008 
      𝛼𝛼22 0.923093 0.0000 
     𝛼𝛼23 0.932919 0.0000 
     𝛼𝛼33 0.940357 0.0000 
     𝛽𝛽11 0.645619 0.0000 
     𝛽𝛽12 0.437165 0.0000 
     𝛽𝛽13 0.608988 0.0000 
     𝛽𝛽22 0.296015 0.0001 
     𝛽𝛽23 0.412361 0.0000 
     𝛽𝛽33 0.574435 0.0000 
DCC 
parameters  

θ1 0.073274                p-value       0.0089   
θ2 0.736037               p-value     0.0000  

Log likelihood 1454.730 1772.009 
Ljung-Box Q-stat.   
𝜀𝜀𝑡𝑡(lag 10) 13.974p-value  0.174  
𝜀𝜀𝑡𝑡2(lag 10) 10.193p-value  0.424  

 
Table 5: Descriptive Statistics for Standardized Residuals 

Statistic GARCH-M GARCH-M 
(t-dist) 

GARCH-M 
(GED) 

GARCHSK-M TARCH-M TARCH-M (t-
dist) 

TARCH-
M (GED) 

Mean  0.144754  0.146564  0.117104 -0.287924  0.081321  0.122737  0.051905 
Median  0.160837  0.130266  0.105250 -0.397040  0.112671  0.075155  0.077206 
Maximum  3.530883  4.205050  3.847917  2.798154  2.997394  4.360491  3.134593 
Minimum -3.020946 -2.619032 -2.635134 -2.496532 -2.66827 -2.489662 -2.81767 
Std. Dev.  0.993460  0.982665  1.010568  0.757900  0.997981  1.020606  0.994028 
Skwness  0.153516  0.589360  0.304888  0.335242  0.114134  0.617398  0.173971 
Kurtosis  4.364631  5.573321  4.300026  4.900875  3.783390  5.190361  3.896186 
Jarque-Bera  15.65190  64.75849  16.49515  32.50300  5.326449  50.57923  7.393699 
Probability  0.000399  0.000000  0.000262  0.000000  0.069723  0.000000  0.024802 

 
 
Table 6: Descriptive Statistics for Conditional Variances 

Statistic GARCH-M GARCH-M 
(t-dist) 

GARCH-M 
(GED) 

GARCHSK 
-M 

TARCH-M TARCH-M (t-
dist) 

TARCH-
M (GED) 

Mean  0.000565  0.000685  0.000537  0.001056  0.000525  0.000639  0.000484 
Median  0.000241  0.000281  0.000234  0.001077  0.000226  0.000347  0.000203 
Maximum  0.006818  0.006606  0.005019  0.006248  0.005700  0.004914  0.003769 
Minimum  5.22×10-5  2.34×10-5  5.61×10-5  0.000187  5.75×10-5  4.28×10-6  8.03×10-5 
Std. Dev.  0.000769  0.000859  0.000637  0.000786  0.000657  0.000741  0.000494 
Skewness  3.991448  2.822785  2.894833  2.386306  3.710096  2.557875  2.249937 
Kurtosis  27.44630  15.68171  16.67755  14.44898  24.71681  12.35400  12.57099 
Jarque-Bera  5290.785  1557.643  1764.765  1230.856  4213.434  909.3453  894.8217 
Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

 
 
 
Table 7: Likelihood Ratio Tests 

GARCH-M vs. GARCHSK-M 
Logl(GARCH-M) 928.0167 
Logl(GARCHSK-M) 511.8632 
LR 839.3032 
p-value 0.00000 
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Table 8: Different Criterions of Predictive Power 
1. Root Mean square error  

𝑅𝑅𝐿𝐿𝑅𝑅𝐸𝐸 = �
1
𝑁𝑁

� (𝜋𝜋�𝑡𝑡 − 𝜋𝜋𝑡𝑡)2
𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

 

2. Theil inequality coefficient 

𝑇𝑇𝐼𝐼𝑇𝑇 =
�1
𝑁𝑁∑ (𝜋𝜋�𝑡𝑡 − 𝜋𝜋𝑡𝑡)2𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

�1
𝑁𝑁∑ 𝜋𝜋�𝑡𝑡2𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1 + �1
𝑁𝑁∑ 𝜋𝜋𝑡𝑡2𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

 

Bias Proportion 
𝐵𝐵𝑃𝑃 =

�𝜋𝜋�� −  𝜋𝜋�
2

1
𝑁𝑁∑ (𝜋𝜋�𝑡𝑡 − 𝜋𝜋𝑡𝑡)2𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

 

Variance proportion 
𝑉𝑉𝑃𝑃 =

(𝜎𝜎𝜋𝜋� −  𝜎𝜎𝜋𝜋)2

1
𝑁𝑁∑ (𝜋𝜋�𝑡𝑡 − 𝜋𝜋𝑡𝑡)2𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

 

Covariance proportion 
𝑇𝑇𝑃𝑃 =

2(1 − 𝑓𝑓)𝜎𝜎𝜋𝜋�𝜎𝜎𝜋𝜋
1
𝑁𝑁∑ (𝜋𝜋�𝑡𝑡 − 𝜋𝜋𝑡𝑡)2𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

 

Notes: Where 𝜎𝜎𝜋𝜋� ,𝜎𝜎𝜋𝜋 are the biased standard deviations of 𝜋𝜋�and 𝜋𝜋, and r is the correlation between of 𝜋𝜋�and 𝜋𝜋.4 
 

Table 9: Out-of Sample RMSE Criterion of Different Models for Various Horizons 
 

GARCH-M 
GARCH  

-M (t-dist) 
GARCH 

-M (GED) TARCH-M 
TARCH-M 

(t-dist) 
TARCH-M 

(GED) 
GARCHSK-

M 
MGARCH 

DCC 
MGARCH 

BEKK 
H=1 0.018695 0.019713 0.018248 0.019334 0.018071 0.018625 0.020791 0.01750 0.022134 

 [5] [7] [3] [6] [2] [4] [8] [1] [9] 
H=2 0.02041 0.021128 0.020406 0.021683 0.020726 0.020805 0.020857 0.021217 0.021176 

 [2] [6] [1] [9] [3] [4] [5] [8] [7] 
H=3 0.021139 0.021129 0.02178 0.022864 0.021812 0.022194 0.02192 0.021316 0.021998 

 [2] [1] [4] [9] [5] [8] [6] [3] [7] 
H=4 0.021184 0.020837 0.021637 0.021525 0.021928 0.021321 0.022012 0.021965 0.023438 

 [2] [1] [5] [4] [6] [3] [8] [7] [9] 
H=5 0.020644 0.02035 0.020729 0.019819 0.019552 0.019679 0.022367 0.021112 0.021485 

 [5] [4] [6] [3] [1] [2] [9] [8] [7] 
H=6 0.019494 0.01991 0.019738 0.020348 0.018462 0.019457 0.02218 0.020196 0.019662 

 [3] [6] [5] [8] [1] [2] [9] [7] [4] 
H=7 0.017371 0.019151 0.019022 0.019598 0.019278 0.019264 0.021941 0.019223 0.0211 

 [1] [3] [2] [7] [6] [5] [9] [4] [8] 
H=8 0.01917 0.019593 0.019933 0.018917 0.020937 0.019201 0.023198 0.019605 0.020815 

 [2] [4] [6] [1] [8] [3] [9] [5] [7] 
Notes: The numbers in the square brackets indicate rankings of the models where [1] indicates the best models. H refers to the forecasting 
horizon. 
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Table 10: Evaluation of Out-of Sample Forecasts Power of Different Models Using TIC 
and Its Components Criterions 
  GARCH-M GARCH-M 

(t-dist) 
GARCH-M 

(GED) 
TARCH-M TARCH-M 

(t-dist) 
TARCH-M 

(GED) 
GARCHSK 

-M 
MGARCH 

DCC 
MGARCH 

BEKK 
H=1 TIC 0.363854 0.982952 0.358889 0.35254 0.338452 0.34295 0.302587 0.36222 0.4265 
 BP 0.099504 0.6776532 0.11804631 0.04446 0.0507977 0.0426786 0.285806 0.21863 0.05725 
 VP 0.249546 0.314733 0.29127 0.07196 0.219993 0.133012 0.068299 0.4727 0.1829 
 CP 0.65095 0.0076135 0.59068339 0.88357 0.7292090 0.8243092 0.645895 0.30865 0.7597 
H=2 TIC 0.420821 0.426045 0.427583 0.41340 0.406722 0.39857 0.30065 0.46036 0.4065 
 BP 0.204543 0.1628098 0.23261685 0.10701 0.1166622 0.1043012 0.247444 0.27745 0.0874 
 VP 0.321693 0.2386596 0.35816646 0.09506 0.2460877 0.1453142 0.044533 0.40619 0.19189 
 CP 0.473765 0.5985304 0.40921668 0.79792 0.6372499 0.7503844 0.708024 0.32805 0.71257 
H=3 TIC 0.438909 0.426471 0.462651 0.43563 0.428863 0.426805 0.31443 0.46508 0.43011 
 BP 0.230208 0.200475 0.259972 0.11802 0.136794 0.122085 0.224175 0.31078 0.13033 
 VP 0.166406 0.407493 0.048039 0.11245 0.184938 0.076312 0.301212 0.20231 0.29212 
 CP 0.477671 0.59721 0.438816 0.80566 0.678268 0.76546 0.727786 0.28172 0.70325 
H=4 IC 0.444631 0.423783 0.463127 0.41491 0.427826 0.414069 0.318861 0.47891 0.47612 
 BP 0.24956 0.227199 0.285687 0.15648 0.14781 0.157556 0.196942 0.30125 0.18063 
 VP 0.335454 0.225844 0.321924 0.10172 0.141726 0.129848 0.066071 0.37716 0.17135 
 CP 0.414986 0.546956 0.392389 0.74178 0.710464 0.712596 0.736988 0.31866 0.64801 
H=5 TIC 0.457764 0.451798 0.484275 0.40788 0.410668 0.409337 0.329224 0.50776 0.46485 
 BP 0.286904 0.280964 0.342037 0.19451 0.204605 0.194762 0.244933 0.38045 0.22828 
 VP 0.377908 0.256781 0.403163 0.11354 0.187152 0.156592 0.021517 0.48775 0.16628 
 CP 0.314396 0.462256 0.2548 0.69192 0.608243 0.648645 0.733549 0.1318 0.60543 
H=6 TIC 0.475717 0.474442 0.501826 0.44549 0.419869 0.433237 0.336506 0.52101 0.45689 
 BP 0.306922 0.273113 0.374432 0.16879 0.229835 0.186327 0.304728 0.38417 0.27288 
 VP 0.344957 0.240325 0.438324 0.07858 0.201703 0.133976 0.006801 0.47155 0.15050 
 CP 0.348121 0.486562 0.187244 0.75263 0.568462 0.679697 0.688471 0.14107 0.57661 
H=7 TIC 0.443149 0.480644 0.511155 0.44375 0.460163 0.446261 0.343699 0.52328 0.50612 
 BP 0.351619 0.286373 0.382762 0.15516 0.198514 0.17115 0.341344 0.39295 0.19653 
 VP 0.349239 0.208344 0.418577 0.05369 0.150501 0.09663 0.00643 0.49988 0.09661 
 CP 0.299142 0.505283 0.198661 0.79114 0.650985 0.732219 0.652226 0.09960 0.67733 
H=8 TIC 0.451423 0.497017 0.529578 0.45877 0.433467 0.467717 0.293675 0.52490 0.53386 
 BP 0.367816 0.293385 0.392099 0.16197 0.21902 0.179934 0.420356 0.41277 0.21872 
 VP 0.344212 0.185285 0.395252 0.04975 0.1278 0.084253 0.008512 0.50333 0.08537 
 CP 0.257243 0.500927 0.18389 0.78003 0.833853 0.726696 0.649427 0.08133 0.68157 
Notes: The best model corresponding to each criterion over different horizons is written in bold. H refers to the forecasting horizon. 
 
 
Table 11: Diebold and Mariano (DM) Test 
 GARCH-M GARCH-M 

(t-dist) 
GARCH-M 

(GED) 
TARCH-M TARCH-M 

(t-dist) 
TARCH-M 

(GED) 
GARCHSK 

-M 
MGARCH 

DCC 
MGARCH 

BEKK 
H=1 1.458992 1.492113 1.45896 1.44863 1.45668 1.452802 1.402642 *** 1.47174 
 (0.07228) (0.06783) (0.07228) (0.0737) (0.0726) (0.0731) 0.080362  (0.0705) 
H=2 -0.15979 -0.718046 *** -0.1653 0.049276 -0.067375 -0.13379 0.07662 -0.3046 
 (0.4365) (0.2363)  (0.4343) (0.4803) (0.4731) (0.44678) (0.4694) (0.3803) 
H=3 -0.00316 *** -0.209487 -0.2860 -0.178037 -0.30003 -0.03094 -0.0408 -0.1276 
 (0.4987)  (0.4170) (0.3874) (0.4293) (0.3821) 0.487659 (0.4837) (0.4492) 
H=4 -0.15002 *** -0.366954 -0.1491 -0.24206 -0.1917 -0.0451 -0.3204 -0.2720 
 (0.4403)  (0.3568) (0.4407) (0.4043) (0.4239) (0.4819) 0.3743 (0.3927) 
H=5 -0.10364 -0.227974 -0.32143 -0.0979 *** -0.049223 -0.113005 -0.2868 -0.1649 
 (0.4587) (0.4098) (0.3739) (0.461)  (0.48037) (0.45501) (0.3871) (0.4345) 
H=6 -0.27653 -0.271964 -0.310418 -0.0615 *** -0.1720 -0.15768 -0.2981 -0.0911 
 0.39107 0.392825 0.378121 (0.4754)  (0.4317) (0.4373) (0.3828) (0.4636) 
H=7 *** -0.47247 -0.2873 -0.2411 -0.23165 -0.28025 -0.19892 -0.2585 -0.5165 
  (0.31829) (0.3869) (0.4047) (0.4084) (0.3896) (0.42112) (0.398) (0.3029) 
H=8 0.263896 0.059182 0.05778 *** 0.046206 0.033042 0.06991 0.06076 -0.0829 
 (0.395) (0.4764) 0.476962  (0.4815) (0.4868) (0.4721) (0.4757) (0.4669) 
Notes: ***indicates that the model is the best one at the corresponding forecasting horizon. The number between brackets are the probability 
of the test statistic.  
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Table 12: Out-of Sample Forecasts Power of Different Combination Methods 
Criterion H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8 
Best model 
MSE 0.000306 0.000416 0.000446 0.000434 0.000382 0.000341 0.000302 0.000358 
RMSE 0.017503 0.020406 0.021129 0.020837 0.019552 0.018462 0.017371 0.018917 
Equal Weights (EQ) 
MSE 0.000314 0.000371 0.000404 0.000398 0.000341 0.000307 0.000292 0.000318 
RMSE 0.01771 0.019272 0.020103 0.01995 0.018456 0.01753 0.017094 0.017823 
Bayesian model averaging (BMA) 
MSE 0.000295 0.000355 0.000406 0.000183 0.000338 0.000257 0.000285 0.000329 
RMSE 0.017172 0.018854 0.020148 0.01353 0.018391 0.016017 0.016867 0.018148 
Dynamic Model Averaging (DMA) 
MSE 0.000133 0.000344 0.000432 0.000181 0.000303 0.000217 0.000237 0.000154 
RMSE 0.011549 0.018534 0.020785 0.013465 0.017413 0.014737 0.015392 0.012402 

 
 
 

Table 13: Bayessian Model Average Weights 
 GARCH-M GARCH-M 

(t-dist) 
GARCH-M 

(GED) 
TARCH-M TARCH-M 

(t-dist) 
TARCH-M 

(GED) 
GARCHSK-

M 
DCC BEKK 

H=1 0.067724 0.067724 0.137949 0.067724 0.135448 0.067724 0.075477 0.374001 0.006228 
H=2 0.101858 0.101893 0.156022 0.10181 0.102002 0.101624 0.200494 0.072962 0.061336 
H=3 0.105897 0.121279 0.113756 0.107715 0.115231 0.109746 0.106074 0.109762 0.110541 
H=4 0.110024 0.114588 0.112444 0.10716 0.112002 0.108586 0.110807 0.114097 0.110292 
H=5 0.111115 0.110642 0.110088 0.110362 0.110226 0.110459 0.117276 0.109987 0.109844 
H=6 0.083204 0.079913 0.078737 0.076998 0.115099 0.072726 0.277065 0.151469 0.06479 
H=7 0.146743 0.089894 0.092044 0.087965 0.088377 0.087661 0.127142 0.145691 0.134483 
H=8 0.075629 0.096739 0.207075 0.158825 0.099929 0.10046 0.079033 0.08909 0.09322 
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Appendix 
1. Calculation of Both Growth Rate of Domestic Credit and Real Exchange Rate 
The credit growth rate reflects the rate of increase in the domestic credit level, and is computed 
using the domestic credit volume, which measures the money amount lent to private agents 
inside the economy.  The domestic credit growth is calculated as:  

𝑇𝑇𝐷𝐷𝑡𝑡 =
𝑇𝑇𝐿𝐿𝑡𝑡 − 𝑇𝑇𝐿𝐿𝑡𝑡−1

𝑇𝑇𝐿𝐿𝑡𝑡−1
 

Where 𝑇𝑇𝐷𝐷𝑡𝑡 is the credit Growth in period t, 𝑇𝑇𝐿𝐿𝑡𝑡 is the level of domestic credit. 
Real Exchange Rate is calculated as: 

𝑅𝑅𝐸𝐸𝑋𝑋𝑡𝑡 = 𝑎𝑎𝑓𝑓𝑚𝑚𝑖𝑖𝑎𝑎𝑎𝑎𝑙𝑙 𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑑𝑑𝑒𝑒 𝑓𝑓𝑎𝑎𝑟𝑟𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑓𝑓𝑙𝑙𝑙𝑙𝑎𝑎𝑓𝑓 𝑝𝑝𝑒𝑒𝑓𝑓 𝐸𝐸𝑑𝑑𝑦𝑦𝑝𝑝𝑟𝑟𝑖𝑖𝑎𝑎𝑎𝑎 𝑝𝑝𝑓𝑓𝑝𝑝𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡 ∗
𝐸𝐸𝑑𝑑𝑦𝑦𝑝𝑝𝑟𝑟 𝑇𝑇𝑃𝑃𝐼𝐼𝑡𝑡
𝑈𝑈𝑅𝑅 𝑇𝑇𝑃𝑃𝐼𝐼𝑡𝑡

 

This implies that the higher value for 𝑅𝑅𝐸𝐸𝑋𝑋𝑡𝑡 means depreciation in the Egyptian pound value.  
Finally, the change in real exchange rate is calculated as 

𝑒𝑒𝑡𝑡 =
𝑅𝑅𝐸𝐸𝑋𝑋𝑡𝑡 − 𝑅𝑅𝐸𝐸𝑋𝑋𝑡𝑡−1

𝑅𝑅𝐸𝐸𝑋𝑋𝑡𝑡−1
100% 

2. Preliminary Examination of Data of Multivariate GARCH Model 
Table A1: Phillips-Perron unit root tests 
variable test statistic 5% critical value Result 
inflation -12.63888 -2.874086* I (0) 
Growth of domestic credit -15.02129 -2.874086* I (0) 
Rel exchange rate -8.957970 -2.874086* I (0) 

Notes: * indicate the rejection of the null hypothesis of the existence of unit root I each series 
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