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Abstract
This paper aims at modelling the density of quarterly inflation based on time-varying
conditional variance, skewness and kurtosis model developed by Leon, Rubio, and Serna
(2005). They model higher-order moments as GARCH-type processes by applying a Gram-
Charlier series expansion of the normal density function. We estimated seven univariate
models, including GARCH-M and TARCH-M models, assuming three different distributions
for the error term, namely: normal, student t, and GED distributions. Additionally, the model
that allows for non-constant higher order moments, GARCHSK-M, has been estimated.
Moreover, the paper utilizes two multivariate models, Dynamic Conditional Correlation (DCC)
and Diagonal VECH models to isolate the time-varying conditional correlations between
inflation and two financial variables, including growth in domestic credit and real exchange
rate. Results revealed the significant persistence in conditional variance, skewness and kurtosis,
which indicate high asymmetry of inflation. Diagnostic tests indicated that models with
invariant volatility, skewness and kurtosis are inferior to the models that permit them to vary
over time. Moreover, depending on models of static historic correlation between inflation and
the highly financial variables in order to evaluate inflation dynamic behavior is misleading and
is a poor informative. Comparing the predictive power of different models showed that basic
models are more accurate in forecasting out-of-sample inflation according to some criterions
and GARCHSK-M is better for other criterions. By applying Diebold and Mariano’s (1995)
encompassing test, it was found that all models could be combined together to form a more
accurate forecast. We have done the combination of forecasts using equal weights, Bayesian
Model Averaging (BMA), and Dynamic Model Averaging (DMA). Results of forecast
combination showed that the combined forecasts outperform the projection of best single
model.
JEL Classification: C13, E31, E37
Keywords: inflation targeting, conditional volatility, skewness and kurtosis, modelling
uncertainty of inflation, multivariate GARCH.
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1. Introduction

Exploring the relationship between inflation and its higher-order moments is quite important
for central banks, especially under inflation targeting regime. That is because the density
forecasts allow a much richer setting of anti-inflation policy. Given that the Central Bank of
Egypt intended to adopt an inflation targeting framework to anchor its monetary policy when
the basic requirements are met (Central Bank of Egypt, 2005), it must have accurate models to
predict future inflation with different frequencies. Additionally, the Central Bank of Egypt
publishes a quarterly bulletin, including inflation data, which supports the need for forecasting
inflation on a quarterly basis. Therefore, the paper aims at exploring the relation between
quarterly CPI inflation and its higher-order moments, which is likely helpful in better
understanding of the risks involved in inflation.

Historically, the Business and Economic Statistics Section of the American Statistical
Association (ASA) and the National Bureau of Economic Research (NBER) started publishing
the first series of quarterly density forecasts in macroeconomics in 1968 (Tay and Wallis,
2000). In addition, the Bank of England has published a density forecast of inflation in its
quarterly Inflation Report since February 1996 (Wallis, 2004).

Research on inflation forecasting is still very limited in Egypt. Noureldin (2005) assessed the
robustness of three alternative models to forecast inflation in Egypt. These three models are
output gap, money gap, and Vector Autoregressive (VAR) models. However, point forecast
does not provide a full description of the uncertainty associated with the forecast. Noureldin
(2008) employs GARCH-M model to investigate inflation dynamics in Egypt and found a
strong positive relationship between the level and variances of inflation. However, ARCH
family models assume that the conditional distribution is time-varying only in the first two
moments and ignore the information content in higher-order moments (Chaudhuri, Kim, and
Shin, 2011).

However, while modelling the third and fourth moments became popular in analyzing the stock
markets, it is not widely used in studying inflation. Roger (2000) found evidence towards right
skewness in inflation data. In addition, (Chaudhuri, Kim, and Shin, 2011) found that there is a
positive correlation between mean inflation, variance and skewness. Harvey and Siddique
(1999) developed an approach to estimate time-varying conditional skewness by modelling
conditional volatility and skewness as GARCH (1,1) process assuming that the standardized
errors follow noncentral t-distribution. To allow for nonconstant conditional kurtosis, Leon,
Rubio, and Serna (2005) developed the methodology of Harvey and Siddique (1999) by jointly
modelling time-varying variance, skewness and kurtosis (GARCHSK model) assuming that
the error term is derived by Gram-Charlier series expansion of the normal density function.
The latter density is easier to estimate than the noncentral t-distribution suggested by Harvey
and Siddique (1999). Ahmed (2011) modelled the density of monthly CPI inflation using the
GARCHSK in mean (GARCHSK-M)model and presented evidence that models allowing
fortime-variant higher order moments outperform models that keep them invariant. Thus, the
current paper contributes to the literature by modelling the relationship between quarterly CPI
inflation and its second, third, and fourth moments, so the validity of the model to different
frequency of data can be examined.

Thus, the current research hypothesizes that models with nonconstant higher order moments
are more accurate in explaining the risks involved in inflation compared to models that keep
them unchanged. Therefore, the main question is: Does modelling quarterly CPI inflation using
models allowing for varying higher order moments helps in better understanding of inflation
uncertainty?

To answer this question, nine different models are estimated. These models include 7 univariate
models of including GARCH-M and TARCH-M models, assuming three different distributions



for the error term. Additionally, GARCH-M model is extended to permit conditional skewness
and kurtosis to follow GARCH type structure, assuming a Gram-Charlier series expansion for
the normal density function.

In addition to the statistical benefits of accounting for second order moment of inflation, the
study models time-varying conditional correlation between inflation and two of financial
variables , namely, growth in domestic credit and real exchange rate. This is done by applying
two multivariate GARCH models; diagonal VECH (DVECH) and Dynamic Conditional
Correlation (DCC). These models allow for better understanding of dynamic co-movements,
which improve the decision making process under an inflation targeting regime. This is quite
important given the growing debate since the recent financial crisis that suggested the need to
pay more attention to include financial variables inside the macroeconomic models (see Borio
(2011).

Results indicate that there is a significant persistence in conditional variance, skewness and
kurtosis. Moreover, comparing different models shows that GARCHSK-M model is superior
to models with time invariant higher order moments in terms of the behavior of standardized
residuals and the likelihood ratio test. Additionally, using models of static historic correlation
between inflation and the highly financial variables to evaluate inflation dynamic behavior is
deceptive and is a poor informative. This is because inflation data for Egypt, like many
developing countries, suffers from many structural breaks and changes in adopted policies.
Furthermore, forecast evaluation is run recursively for different forecasting horizons ranging 1
quarter to 8 quarters, as inflation in actual policy conduct is likely to be forecasted in a two-
year horizon. According to Root Mean Square (RMSE) criterion, the different time-invariant
models are more accurate in forecasting power, in comparison with GARCHSK-M. On the
other hand, GARCHSK-M outperforms all competing models in terms of Theil Inequality
Criterion (TIC) over different forecasting horizons. Applying the encompassing test introduced
by Diebold and Mariano (1995) reveals that the all competing models are not encompassed by
the best Model according to RMSE over the different forecasting horizons. This implies that
these models could be combined together to form single forecast. The combination of forecasts
is done using three different combination methods: equal weights, Bayesian Model Averaging
(BMA), and Dynamic Model Averaging (DMA). Based on these three approaches, it is evident
that the combined forecasts are superior to the projection of the best forecast of individual
models.

The paper is structured as follows. Section 2 is devoted to review the existing literature. Section
3 presents the different models employed in the current research, while the preliminary check
for the data, analysis of the results and comparison of different models are the core of section
4. Section 5 presents the methodology and results of forecast combinations. Finally, section 6
concludes and draws policy implications.

2. Literature Review

Modelling the relationship between inflation and its higher-order moments is quite important
for policymakers to provide a better understanding of the uncertainty of inflation. Friedman
(1977) asserts that high inflation leads to more variable inflation. This inflation uncertainty is
costly since it distorts relative prices and increases risk in nominal contracts (Berument et al,
2001). From the empirical perspective, Engle (1982) empirically proved that for some kinds of
data, including inflation, the variance of the disturbance term is not stable as usually assumed
by OLS model. Instead, he used Maximum Likelihood (ML) methodology to study UK
inflation and finds that it follows Autoregressive Conditional Heteroscedasticity (ARCH)
process. The ML estimator is more efficient than OLS estimate. However, the ARCH model is
criticized as there is no clear approach to choose the suitable number of lags of the squared
residuals to be included in the model. Additionally, this number of lags may be relatively large



leading to non-parsimonious model and a violation of the non-negativity assumptions for the
volatility equation. Furthermore, it assumes that the current conditional volatility depends only
on the past values of residuals squared, which may be an unrealistic assumption as the volatility
response to positive and negative shocks are not similar (Engle,1995; Rachev et al,2007; and
Brooks,2002).

Bollerslev (1986) presented a generalized ARCH (GARCH) process by modelling the
conditional variance as an ARMA process to allow for a more flexible lag structure without the
violation of the non-negativity restrictions. However, the basic GARCH model is limited by
assuming that the response of variance to negative and positive shocks is similar. To account
for this asymmetry, Nelson (1991) proposed the exponential GARCH (EGARCH) model in
which the conditional variance is a function of both the size and the sign of lagged residuals
assuming that the residuals follow generalized error distribution (GED). However, this
distribution allows shocks of different signs to have a different impact on volatility, but is still
symmetric like the normal distribution (Harvey and Siddique, 1999). Glosten, Jagnnnathan and
Runkle (1993) introduced a formula that captures the leverage effect of financial time series,
namely threshold ARCH (TARCH) or GJR specification®.

Theoretically, the relationship between inflation and skewness could be examined using two
different models. Under a sticky price model, Ball and Mankiw (1995) argue that there a
positive correlation between the mean and skewness of the price-change distribution. However,
the model assumes that the mean-skewness correlation vanishes in the long-term since this
correlation is attributed to short-run considerations. On the other hand, under a flexible price
model, Balke and Wynne (1996) show a positive correlation between mean inflation and
skewness. Opposite to Ball and Mankiw (1995), they believe that this relation should persist or
even it may be strengthened in the long-run. Consequently, modelling the mean-skewness
relationship of inflation could highly great important in investigating and forecasting future
inflation.

Although ARCH family models are quite suitable in modelling time-varying conditional
variance, they assume that skewness and kurtosis are time invariant and ignore the information
content in higher-order moments (Chaudhuri, Kim, and Shin, 2011). To fill this gap, Harvey
and Siddique (1999) introduced a model to jointly estimate nonconstant conditional variance
and skewness. They extended the traditional GARCH (1,1) model by explicitly modelling the
conditional variance and skewness using ML framework assuming that the standardized errors
follow noncentral t-distribution. To allow for nonconstant conditional kurtosis, Leon, Rubio,
and Serna (2005) developed the methodology of Harvey and Siddique (1999) by introducing
GARCHSK model assuming that the error term is derived by Gram-Charlier series expansion
of the normal density function. This distribution is easier to estimate compared to the
noncentral t-distribution suggested by Harvey and Siddique (1999).

Chaudhuri, Kim, and Shin (2011) introduce a semi-parametric functional autoregressive (FAR)
model for forecasting a time-varying distribution of the sectoral inflation rates in the UK.
Ahmed (2011) modelled the density of monthly CPI inflation using the GARCHSK-M model
and found that models that permit higher order moments to vary across time outperform models
that keep them constant. This paper contributes to the literature by modelling higher order
moments of Egyptian quarterly inflation data. Moreover, it explores the dynamic relationship
between inflation and other high volatile financial variables, such as growth in credit and real
exchange rate by employing two Dynamic Multivariate GARCH models that have never been
applied to study inflation in Egypt. Furthermore, the estimated models are used to calculate the
forecasts of inflation on both short-term and medium-term horizons. Finally, the contribution

! For more details about the different extensions of ARCH/GARCH models, see Bollerslev (2008).



of the current research is using the forecasts resulting from different individual models to
improve the prediction accuracy by providing a combined forecast using two methods of
forecast combinations: BMA and DMA, over the different predicting horizons.

3. Empirical Models

This section presents the basic GARCH model briefly as well as the TARCH extension to
account for the leverage effect. Then, we present both multivariate GARCH models and
GARCHSK-M model that permits conditional skewness and kurtosis to vary across time. The
methodology of Leon, Rubio, and Serna (2005), used to estimate the latter model, will be
introduced in detail.

3.1 Models of time-varying conditional volatility

Bollerslev (1986) extended the basic ARCH model to relate the conditional variance to both
past squared errors and past conditional variances. The GARCH(1,1) model has the following
specification of the conditional variance

he = Bo + Brefos + Bohes
Where h, is the conditional variance, h,, is the past volatility which is used as a measure of
variance persistence and &7, is the past squared errors.

In order to ensure that the conditional variance is strictly positive, the following inequality
restrictions are to be imposed: g, = 0, ; = 0, B, = 0. Additionally, to insure stationarity, it
is also required that 8, + B, < 1 where the persistence of variance becomes higher as f3,
approaches 1.

One of the key restrictions of GARCH (p,q) models is that they enforce a symmetric response
of volatility to positive and negative shocks. GJR specification that captures the leverage effect
of financial time series could be written as

ht = Bo+ ﬁ15t2—1 + Brhe1 + ,335t2—1(5t—1 <0)

According to the TARCH model, the conditions 8, > 0, 8; > 0, B1+ 3 >0, B, > 0 are
sufficient to ensure a strictly positive conditional variance. The asymmetry parameter S5 is
allowed to be of either sign to capture the asymmetric effects. This parameter measures the
contributions of shocks to both short run persistence (5, + f3/2) and long run persistence
(B + B2 + P3/2). Another interpretation of the relation between the mean inflation and its
uncertainty allows the conditional variance to be a regressor in the mean equation. This
GARCH in mean specification denoted GARCH-M add another term in the equation of the
mean as follows

e = phe + XL T + &

Where mt; refers to inflation, h.is the conditional volatility. Actually, the relation between
inflation, volatility and price dispersion has been investigated using GARCH-M specification
(Grier and Perry, 1996). Their results suggest that inflation volatility is superior to trend
inflation in investigating price dispersion. Additionally, Wilson (2006) employs an EGARCH-
M model to explain the relation between inflation, its volatility and output gap. Their results
suggested that higher uncertainty does raise inflation and reduces output, which supports
Freidman’s (1977) argument.

Multivariate GARCH models are very similar to their univariate counterparts. The main
difference between the two versions is that the former also specify equations for how the
covariances change over time. Therefore, they are useful in analyzing the dynamic relationship
or co-movements between different economic and financial variables. Several different
multivariate GARCH formulations have been proposed in the literature; here we present two



of them which are diagonal VECH and Dynamic Conditional Correlations (DCC). The VECH
model is a the first multivariate GARCH model that was proposed by Bollerslev, Engle and
Wooldridge in 1988. The main problem of the unrestricted VECH model is the existence of a
very large number of parameter in the conditional variance and covariance matrix. As a result,
the estimation of VECH becomes quickly infeasible by increasing the number of variables. The
diagonal VECH model avoids this disadvantage by assuming a diagonal conditional variance
and covariance matrix. The first order diagonal VECH model can be presented as follows:

hije = cij + @jj& 1 & -1 + Bijhije—a fori,j=123

where c;;, a;;and S;;are parameter of constants, ARCH and GARCH terms respectively. The
hllt .

covariance matrix can be expressed ash, = | hz21c haz: - |, where the elements of the

h31,t h32,t h33,t
diagonal matrix hyq, h,, . and hsz . are variances and off diagonal matrix are the time varying
correlation.

Concerning Dynamic Conditional Correlations (DCC) models, the constant conditional
correlation (CCC)model was proposed by Bollerslev in 1990 by estimating the constant
conditional matrix.

T
_ 1 ,
k= 72%
t=1

Where & = ni/v/hie , Q is NxN unconditional variance matrix of e. Although, the
conditional variances are assumed to vary, the constant correlation seems to be irrelevant to
many financial and macro variables where the relationship changes with changing in structural
breaks or even in changing in policies.

In 2002, Engle introduced the Dynamic conditional model as nonlinear combination of
univariate GARCH models through generalizing the CCC model. The DCC model can be
presented in this form:

Hy = DiR;D,
Where
1 1
D, = diag(h?,, , ... ...., h%,)and each hy;, is estimated from the traditional univariate GARCH
model.
1 1 1 1
R, = diag (qflt e e qu> Q.diag (qflt ) e ....,qf,N>

WhereQ, = (q;j¢) is the NxN symmetric positive definite matrix andQ, takes the usual
GARCH representation:
Qe=0—a—B)Q+ 65151+ 6,0,

Where &;; = n;:/+/hir » Q is NxN unconditional variance matrix of &, and both 8, and 8, are
non negative coefficientsand 6, +6; < 1.
3.2 Modelling conditional variance, skewness and kurtosis?:

Leon, Rubio, and Serna (2005) developed a new approach allowing for modelling time-varying
variance, skewness and kurtosis jointly as a GARCH process. The employed likelihood

2 This section is mainly based on LRS (2005) and their development to the GARCH-type model of skewness and kurtosis.



function, based on the series expansion of the normal density function is less complicated to
estimate in comparison with the likelihood function proposed by Harvey and Siddique (1999)
that assumes non-central t distribution for the model errors.

First, an inflation model is specified as GARCH (1,1) or TARCH (1,1). Then, a GARCH(1,1)
specification for both conditional nonconstant skewness and kurtosis is included. Let
GARCHSK-M refer to the model when the conditional variance is derived by a GARCH
specification while TARCHSK-M when conditional variance is derived by the TARCH (1,1)
model. In addition, denote the specification that allows for an asymmetry term in the skewness
and kurtosis equation by TARCHTSK. Thus, the different models are specified as follows

Mean equation:  m, = X1, a;me_; + EtE~(0,02) 1)
& = Tlt\/h_t , ne = (0,1)  E(eglle—q) =~ (0,hy)

Variance (GARCH): h, = Bo + Bi1e?1 + B2efy + Bshi_q 2)
Variance (TARCH): he = Bo+Pre?q + Bohi—q + B3et1(g—1 < 0) (3)
Skewness (GARCH): Se = Vo + Vi1 + V2Se-1 (4)
Kurtosis (GARCH): ke =6y + 8, nt_1 + 82k (5)

Where ¢&;is the error term, n.is the standardized residuals, h;,s;, and k.are conditional
volatility, skewness and kurtosis corresponding to n.respectively. They establish that
Ei_1(n) =0,E1(n?) = 1,E,_,(n?) = s;and E._,(n{) = k,. First, two basic models are
estimated, a GARCH (1,1)-M (equations (1) and (2)) and a TARCH (1,1) (equations (1) and
(3)). This followed by models with nonconstant higher order moments, GARCHSK (equations
(1), (2), (4) and (5)).

They employed Gram-Charlier series expansion of the normal density function and truncated
at the fourth moment to get the following density function for the standardized errors

fQrelle-) = (1) [1+E (3 — 3n5) + 222 (nf = 307 + 3)| = p (P, (6)

Where ¢ (. )denotes the probability density function (pdf) corresponding to the standard normal
distribution. Since some parameter estimates may lead to negative value of f(.) due to the
component Y (. ), therefore, f(.) is not a real density function. Additionally, the integral of
f(.) on R is not equal to one. Therefore, LRS (2005) introduced a true pdf, by squaring the
polynomial part ¢ (.), and dividing by the integral of f(.) over R to assure that the density
integrates to one. The resulting form of pdf is as follows:

wmelle-1) = d)(nt)lpz(nt)/l} (7)
Where
2 Y

Thus, the logarithm of the likelihood function for one observation corresponding to the

conditional distribution &, = n/h;, whose pdf is \/h,w(n.|l,_;) could be reached after
deleting the redundant constants as follows

e = =5 Inhy =12 + In(Y*(n,) — In(T) ®

One advantage of this likelihood function is the similarity with the standard normal density
function in addition to two adjustment terms to account for time-varying third and fourth
moments. What is more, the aforementioned developed density function in equation (7) nests



the normal density function (when s,= zero andk,= 3). Thus, the restrictions imposed by the
normal density functions (i.e., Yo =v1 =¥, =06, =0, =6, =0) could be tested by
conducting a likelihood ratio test.

4. Empirical Results
4.1 Data and preliminary check

The data of quarterly CPI, domestic credit and nominal exchange rate are sourced from
International Financial Statistics (IFS) and cover the period 1957:1 to 2015:1. Inflation data is
computed as quarterly changes in the logarithm of the CPI. Both the growth rate of domestic
credit and real exchange rate for the same period have been calculated over the whole period?.
The period (1957:1 2007:1) will be used for estimation whereas the period (2007:2 2015:1)
will be used for evaluating the forecasting performance of the employed models. The
estimation sample is chosen to include the largest number of available observations to provide
more accurate results. The selected forecasting period is long enough to allow us to compute
the combination of the competing forecasts.

Table no. 1 gives the basic descriptive statistics for the data. It is clear that the data is not likely
to be drawn from normal distribution according to Jarque-Bera (JB) test statistic.

Prior to estimate models with time-varying higher order moments, the dynamics structure in
the conditional mean is examined by correlogram of inflation as guidance for selecting the
appropriate mean specification. According to Brooks (2002), a given autocorrelation

coefficient is classified as insignificant if it is within range of +1.96 x 1/+/N, where N is the
number of observations. In this case, it would imply that a correlation coefficient is classified
as significant if it were outside the band of -0.1385 and 0.1385. Exploring the correlogram of
the data reveals that autocorrelation coefficients are significant up to the seventeenth lag.
Additionally, the coefficients of partial autocorrelation are significant for the first four lags.
Therefore, an ARMA process seems appropriate; the information criteria are employed to
determine the suitable order. However, by estimating different specification for the mean
equation using different orders of AR and MA terms, criteria choose different models. That is
while AIC selects an ARMA(1,4) specification of the mean equation, SIC chooses
ARMA(1,1). Moreover, the values of both criteria show that many different models provide
almost identical values of the information criteria, which indicates that the chosen models do
not provide particularly sharp characteristics of the data and other specifications could fit the
data almost as well. The selected specification includes first and fourth lags of inflation.
Diagnostic checks reveal the absence of serial autocorrelation amongst the residuals while it
exists in the sequences ofe?, €2 and /. Moreover, ARCH LM test indicates the existence of
ARCH effects in the residuals. Therefore, a model that assumes nonconstant heteroscedasticity,
skewness and kurtosis would be more appropriate in modelling inflation.

As the likelihood function is highly nonlinear, good starting values of the parameters are
essential. Thus, the models should be estimated in steps, starting from simpler models that are
nested in the complicated ones. In other words, the estimated parameters of the simpler models
are used as starting values for more complex ones. Accordingly, this research started modelling
inflation using basic GARCH(1,1)-M model and TARCH(1,1)-M model to test the asymmetry
of volatility response to the sign of the shock to inflation. It is worth noting that the variance
equation is allowed to include two dummies, d74 and d91. The first dummy captures the effects
of shifting to the open door policy in 1974 that leads to a high increase in the inflation rate. The
second dummy is included to capture the start of Economics Reform and Structural Adjustment
Programme (ERSAP) in May 1991. Adding these dummies to the volatility equation allows for
exploring their effect on the variability of inflation. Furthermore, both dummies are essential

% For details of calculation, see the appendix.



to insure covariance stationarity in the different models. Moreover, | have estimated a GARCH-
M and TARCH-M model with GED and t- distribution for the error term. This is done to
compare the effect of choosing a non-normal distribution of the error term with models that
allow skewness and kurtosis to vary with time.

4.2 Results

Table (2) reports the results of the four models, GARCH-M with normal distribution, t-
distribution and GED distribution, and the GARCHSK-M model with time-varying conditional
third and fourth moments. Results indicate a significant presence of conditional variance
persistence as the parameter of lagged volatility is positive and significant across the different
models at different level of significance. Thus, high conditional volatility leads to higher
conditional volatility next quarters. Additionally, the coefficient of volatility persistence
increases when the error term follows both t-distribution and GED distribution. Also, the
variance persistence increases by allowing for nonconstant conditional skewness and kurtosis
in GARCHSK-M specification. Concerning the volatility effect in mean equation, the
estimated parameters are positive and significant across all models. Allowing the error term to
follow non-normal distribution reduces the magnitude of this parameter in comparison with
both GARCH-M with GED distribution and GARCHSK-M models. Moreover, allowing the
error term to follow a t distribution leads to the highest volatility persistence. Concerning the
conditional skewness, it is found that skewness persistence is positive but insignificant while
shocks to skewness are negative and significant. Similarly, the conditional kurtosis equation
indicates that quarters with high kurtosis are followed by quarters with high kurtosis as
concluded from the positivity and significance of lagged kurtosis parameter. Moreover, the
coefficient of lagged kurtosis is higher than that of the lagged volatility. Finally, shocks effect
to kurtosis are the smallest related to the effects of shocks to volatility and skewness. With
respect to dummies effect in the variance equation, d74 is positive and significant in all cases.
Additionally, d91 is negative and significant all models except GARCHSK-M.

Results of models that allow for asymmetries are displayed in table (3). First, the asymmetric
parameter in the volatility equation, S, is found to be negative and significant in all TARCH
models with different distributions of the error term. Compared to models without asymmetry
term, the inclusion of asymmetry term increases the magnitude of volatility persistence in all
cases. Secondly, the shocks to inflation S;is found to be significant in the all TARCH-M
models where the highest magnitude is in the model that assumes a normal distribution for the
error term. Additionally, the persistence parameter in the variance equation is significant in all
models with the highest magnitude in TARCH-M with t distribution for the error term. In
addition, the parameter of GARCH in mean is significant in all TARCH models.

Concerning the specification of the models, the Ljung-Box Q-statistics for the sequence of
&, €2, e2ande} are insignificant for lag length even larger than 20, which implies the absence
of any serial correlation in these series. Furthermore, ARCH LM tests indicate the absence of
any further ARCH effects in the standardized residuals. To choose the best model, SIC criterion
is set to be equal to In(LML) — (q/2)In(N), where q is the number of estimated parameters,
N is the number of observations, and LML is the value of the log likelihood function using the
q estimated parameters. Then, the best model is the one with the highest SIC. According to SIC
criterion, the specification in which the third and the fourth moments, GARCHSK-M, are
allowed to be time-variant is the best model.

To sum up, these results support Friedman (1977) hypothesis concerning the positive
correlation between inflation and its uncertainty, as volatility persistence and GARCH in mean
coefficients are significant in all models except GARCH-M with GED distribution.
Additionally, the results show the evidence of positive skewness that is consistent with Balke
and Wynne (1996) that the mean-skewness correlation could persist even in the long-run.



Finally, the results of the two multivariate GARCH models are presented in table (4)*. We
employed two financial variables: the growth rate of domestic credit and real exchange rate.
These variables are chosen to figure out the dynamic relationship between inflation and those
variables that might help the policymakers in conducting their monetary policy given the high
importance of the effects of these variables on inflation. Concerning the DCC model, the results
of conditional variances of univariate models are presented where both stationarity and
nonnegativity assumptions are met. In addition, the bottom part of the table displays the DCC
parameters, the effect of past standardized shocks 8; = 0.073 and lagged dynamic conditional
correlation 8, = 0.736. Both parameter estimates are significant, which indicates that the
variables are related together in multivariate dynamic relationship. The diagnostic tests
revealed that these models are free from autocorrelation and ARCH Effects.

Figure (2) shows the correlation between inflation in one side and both growth of domestic
credit and exchange rate on the other according to the DCC model. It is clear that the relation
between inflation and the growth of domestic credit is highly dynamic. The correlation
between the two variables has decreased in late 1965 after the industrial plan. Also, it declined
again with the shift to the open door policy in late 1974. Then, the correlation was strengthened
after the implementation of ERSAP in 1991. With the reforms executed by the central bank in
2003, the correlation reached a minimum but the correlation started to increase again after the
announcement of the central bank of Egypt regarding its intention to move to inflation targeting
regime in mid-2005 after the starting of inflation targeting policy. Overall, the positive sign for
the correlation refers to the positive relationship between growth rateof credit and inflation
level.

Concerning the correlation between inflation and real exchange rate growth, there is a positive
strong relationship between inflation and real exchange rate which implies that more
depreciation in the value of Egyptian pound leads to increasing inflation rate. This is especially
important since the imports of food and raw materials represent a high portion of Egypt’s
imports. Additionally, the correlation between inflation and real exchange rate was increased
in with the movement to the open door policy and in 1991 with the launch of ERSAP. Finally,
this correlation is significantly increased after the float of the Egyptian pound in 2003, which
resulted in a high devaluation of the value of the pound.

With respect to the VECH model, the coefficients of ARCH and GARCH terms are
significantly differ from zero, which indicates the existence of a strong multivariate GARCH
relationship between the three variables. Figure (3) shows the time plot of covariances between
inflation and both growth of domestic credit and real exchange rate according to VECH model.
The covariance between inflation and growth of domestic credit is highly volatile in most of
the time period. Additionally, this covariance relation increased sharply in 1981 with the
banking crisis in Egypt but this relation was less volatile starting from late 1990s resulting from
the success of monetary policy in controlling it. On the other hand, the figure of covariance
between inflation and real exchange rate growth indicates a massive increase in the covariance
after ERSAP that witnessed a huge devaluation in the value of the Egyptian pound.

4.3 Diagnostic tests

The first comparison procedure is comparing the behavior of the standardized residuals
obtained from different models. The standardized residuals of GARCHSK-M model have the
lowest standard deviation of 0.75 in comparison with other model,s which implies that the
standardized residuals series from models with time-varying higher order conditional moments
have a lower dispersion than those obtained from time-invariant conditional skewness and
kurtosis. On the other hand, GARCH-M model with normal distribution has the lowest

4 For preliminary examination of the included variables, see the appendix.

10



skewness whereas TARCH-M model with normal distribution has the smallest kurtosis. The
second procedure of comparison is to assess the behavior of conditional variances obtained
from the different models. The descriptive statistics of these conditional variances are presented
in table (6). The volatility of GARCHSK-M model has the lowest standard deviation compared
to other models. On the other hand, TARCH-M with GED has the smallest skewness while
TARCH-M with t distribution has the lowest kurtosis. Finally, employing the likelihood ratio
test to compare GARCH-M and GARCHSK-M, reported in table (7), indicates the rejection of
the null hypothesis that the restricted density (i.e., the normal density function) is the correct
density.

4.4 Forecasting performance

Table (8) displays the different measures used to assess the predictive power of the employed
models. The forecast error statistics RMSE depend on the scale of the dependent variable.
Thus, it is a relative measure to compare forecasts across different models. According to this
criterion, the smaller the error, the better is the forecasting ability of the related model. With
respect to the Theil inequality coefficient, it must lie between zero and one, where zero is a
sign of a perfect fit. Additionally, the bias and variance proportion are indications of how far
the mean and variation of the forecast are from the mean and the variance of the actual series
while the covariance proportion measures the remaining unsystematic forecasting errors. These
different proportions must sum up to one where smaller bias and variation proportion refers to
a better forecasts. Thus, most of the bias should be concentrated on the covariance proportion.

Another forecasting comparison procedure is to run encompassing tests. The idea behind using
the encompassing test is as follows: suppose that we have two alternative sets of forecasts f1
and f. of a variable where the performance of f; outperforms f, according to some criterion,
say RMSE. Then, if the f, contains no useful marginal information, than it is said that f
encompasses fo. It follows that if f» is not encompassed by fi, this means that f may provide
some marginal information that is not contained in the better forecast. In this case, the two
forecasts could be combined together to form a combined forecast. To eliminate the forecasts
that are encompassed by the best projection, the models should be ranked according to their
predictive power according to RMSE. Then, select the best model with the smallest RMSE and
successively test whether the best model forecast encompasses other models using Diebold and
Mariano (DM) (1995) test. If the best model encompasses the alternative model at some
significance level a, then the encompassed model should be eliminated from the list of models.
The test is repeated with all alternative models according to their ranking (Kisinbay, 2007).

The test statistic developed by Diebold and Mariano (1995), abbreviated as DM, is used to test
for equal predictive ability of the two competing forecasts. It considers a sample of loss
differential series d, defined as d, = L(e;;) — (e,;) where L is some arbitrary loss function®
like RMSE , e;; is the t-step ahead forecasts of the model i =1,2andt=1, 2,....... ,T. Equal
predictive accuracy amounts to E(d;) = 0, and the test depends on the observed sample mean
d= %Z{zl d;. Assuming the covariance stationarity in the loss deferential series, the DM test

statistic is asymptotically normally distributed under the null hypothesis of equal predictive
accuracy of competing forecasts. The test statistic is as follows

da
DM = _— 9
V@ 9)
Where V(a) is a consistent estimate of the asymptotic variance of d, and assuming that t-step-
ahead forecasts exhibit dependence up to order t—1, it is obtained as:

Sloss function need not be quadratic or even to be symmetric, and forecast errors can be non —Gaussian, nonzero mean, serially
correlated and contemporaneously correlated.
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V(d) == (o +2ZZ1 7)) (10)
Where y; is the ith autocovariance of d, estimated by 7, = ¥1_;,,(d; — d)(ds—; — d).

Table (9) presents the results of RMSE for the out-of-sample (2007:2 to 2015:1) period. The
forecast evaluation is run recursively for different forecasting horizons ranging from 1 quarter
to 8 quarters, as inflation in actual policy conduct is likely to be forecasted in a two-year
horizon. According to RMSE, Overall, the performance of different models in forecasting
inflation varies significantly with different forecasting horizons. Also, univariate models
provide better forecast over all horizon except the very short horizon. That is to say,
Multivariate GARCH model with DCC is the best model in the very short horizon (1 step),
where its forecasting performances is much lower over longer horizons. On the other hand,
TARCH-M model performs badly over short horizon while it is the best model in predicting 8
step ahead forecasts.

On the other hand, the TIC of GARCHSK-M model over all forecast horizons is the lowest and
below 0.34 implying a good forecasting power. Also, the variance proportion is the lowest over
all horizons except H=3. This indicates that GARCHSK-M model succeeded in tracking the
actual variance path in all horizons except the 3 step-ahead forecast. Concerning the bias
proportion, results show that in most of horizons, TARCH-M model with normal distribution
has the minimum bias implying that the mean of the forecast can moderately track the mean of
actual data over the forecasted period. Finally, concerning the covariance proportion, TARCH-
M model with normal distribution has the greatest value for horizons 1, 2, 3, 6 and 7, whereas
GARCHSK-M model has the highest CP for horizons 4 and 5. This implied that these two
models moderately tracked both mean and a variance path in these horizons and the most of
bias is due to unsystematic errors. Therefore, however, GARCHSK-M is not selected by RMSE
over any forecasting horizon, it is regarded as the best model according to TIC.

The abovementioned results indicate that there is no unique model that performs well at all
forecasting horizons. Therefore, at each horizon, the comparisons between the forecasts of the
best model and its alternative models are done bilaterally using the DM (1995) forecast
encompassing test. Results of the DM test are displayed in table (11), they show that the null
hypothesis of equal forecasting accuracy cannot be rejected at 5% level of significance for all
models at all forecasting horizons. This implies that all competing models contain marginal
information that is not included in the best model according to the RMSE criterion.
Consequently, all models could be combined together to produce a single forecast, which is
done in section 5.

5. Forecast Combination

As indicated earlier, different parametric models give different forecasts, and choosing the best
model according to some criterions will result in discarding some projections, which may have
some marginal information that is not contained in the best forecast. Therefore, the inclusion
of these predictions to form a combined forecast may provide more accurate results. Especially,
it is empirically evidenced that combining forecasts is an efficient approach to improve the
accuracy of the forecasting (Clemen, 1989; Armstrong, 1989). Therefore, the current section
applies forecast combination techniques to form a combined forecast. The curial issue in
combining forecasts is to find the optimal weight that should be assigned to each individual
model to minimize a specific loss function. The current paper applies three different procedures
of choosing the optimal weights in combining forecasts, namely, simple average, Bayesian
Model Averaging (BMA) and Dynamic Model Averaging (DMA).
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5.1 Approaches of forecast combinations

Suppose that we have k available forecasts yr.p 1, V7412, - » Yr+1k » Which are coming from
k  different models to compute a  forecast of < yr,n. LetYron =
g(}?ﬂh,l,yﬂh,z,...,yﬂh,k,wiﬂh) be the combined point forecast as a function of the
underlying single forecasts from yr.,, to 97,5k, the forecast combination scheme g, and
the vector of the parameters of the combination wyp,.

The values of the optimal combination weights Wy, could be obtained by minimising the
following loss function:

min,.., E[L(ersn(Wrs|I14n,10 o I14n k] (11)

The functionerin = yrin — 9Ur+n1 -+ Y1410 Wr+n) 1S the combined forecast error, and L
is the loss function that is assumed, for simplicity, to be dependent on the forecast error. In
most cases there is no closed form solution of equation (11), but analytical results may be
computed by imposing restrictions on the loss function and making distributional constraints
on the forecast errors. Often it is simply assumed that the objective function is the MSE loss
function:

L(er+1(Wr41)) = 0(Pren — Yr+n)?0 >0 (12)

For this case, the combined forecast chooses a combination of the individual forecasts that best
approximates the conditional expectation, E(eyr+1|¥7+1)- In the all approaches that we apply
we assume the MSE loss function and we fix@ = 1. Different distributional restrictions, for
example, assuming a time varying 8, imply different estimation techniques in equation (11).
To calculate the optimal weights that should be assigned to competing models, three different
approaches have been used. The approach is Equal weight (EQ), which is the simplest method
for calculating the combination weights as the mathematical average of all available individual
forecasts. Despite its simplicity, many studies have found that it works better than many
complicated techniques for calculating combination weights. On the other hand, it can perform
worse than even individual competitors in the case of considering many poor forecasting
elements. The formula of calculating EQ is given in equation (13)

wp =+ (13)

where w; is the weights for all models, and k is the number of the considered models.

The second employed technique for combination is Bayesian model averaging (BMA).
Assuming k potential models and only one of these models is the true model; firstly, we define
the prior probability that associated for each of the available models. Secondly, we estimate
the posterior distribution as the weighted average of the conditional predictive densities for the
included models. The predictive density of y,, ;, given the available observed data till the time
t, Fr, is estimated using the weighted average of the conditional predictive densities given the
available models with the posterior probabilities by:

pr+n/Fr) = Xicip(mi/Fr) pren/Fr,m;) (14)

wherep(m;/Fr) is the model m; posterior probability and p(yr+n/Fr, m;) is the conditional
predictive density conditional of the model m; and the function F;. The conditional predictive
density is calculated given the function F and the model m; as:

pYren/Fr,m)) = [pYrin/0i Fr,m)p(6;/F;, m;)do; (15)

where [ p(yr4n/0:, Fr,m;) is the conditional predictive density of y;.,, given 6;, Frand m;.
Then, the posterior probabilities of model M; can be estimated by:
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P(D/M;) P(M;)

P(Mi/D) = Wi =5 oo o

(16)

where D is specified data set and P(M;) is the prior probability for the model M; . Then, the
likelihood of the model M; can be calculated:

P(D/M;) = [ P(D/6;,M;) P(8;/M;)d®; 17)

Since6; is the vector of parameters that associated for model M; and P(6;/M;) is the vector of

prior density of 8; under model M;. we will use the posterior probability for each to get the

individuals combination weights w;. Under the non-informative from, we can assume equal
16

prior probabilities for all models as Prior; = it

The final combination method is Dynamic Model Averaging (DMA) which is developed by
(Raftery et al., 2010) and it has been applied to forecast inflation by Koop and Korobilis (2012).
It combines forecasts from different models based on the predictive likelihood of each model
as approximate to the past forecasting performance.

The DMA allows for the weights associated to the different models to vary over time in contrast
to the known Bayesian Model Averaging (BMA) approach which yields constant weights for
the different models. Koop and Korobilis proved that DMA approach with different constant
coefficients models is a good substitute for adopting time varying coefficients models.

In order to illustrate the idea of DMA, consider the cases of n models are available for
forecasting. Also, let M, € {1, ... ... ,n}be one of these available models at time t and the
information set available till the point s is X° = (X4, ..., X)'. Hence, the weight is defined in
terms of the probability that this model M engages at time t conditional on information set up
to s is:

Wtism = pr(Mt = m/XS) (18)

In addition to, a recursive algorithm that DMA depends on to calculate w/;, and wy ;_q,m -
It also uses a specific approach call “forgetting factor”, a. This approach helps to ease the
computation burden when there are a large number of available models.The predictive
likelihood can be calculated for each model given the predictive density for each model. Then,
following updates can be calculated by using the predictive density information, as follows:

W/ tm —

We/t—1,0m(Xe/X1)
19
Z,tc/t—l We/t—1,00(Xe/XE71) (19)

In case, we are assuming that wy ;4 r, is known and with assuming some initial starting values
W, 0,m- We can calculate the other elements in the system: wy ¢, and wy/_1 m for the models

In regards of the missing quantityw 1, Raftery et al. (2010) used the following
approximation:

o wi g /t-1m
Weit—-1,m = Z—It‘:lW?_l/t—l.L (20)
The weights assigned to different models at each current period t will be conditional on this
model performance in the recent past periods. In which length is the "recent past” is, this is
determined by the forgetting factor, A. We have depends on the benchmark value for the

forgetting factor in Raftery et al. (2010), A = 0.99 which implies that in case of quarterly data
the last 5 years performance receives around 80% in the weighting criteria.

®All Bayesian weights and calculations are estimated by using BMS package inside R software.
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5.2 Combination results

The main aim for any forecasts combination process is to improve the accuracy of the
individual forecasts, hence the good combination scheme should be characterized by two
features: the first one should beat all individual models forecasting accuracy and the second
should perform well in comparison to the other combination methods. In our analysis, we will
compare the forecasting performance between the different forecasting combination schemes
and the best model in terms of MSE and RMSE. Table (12) reports MSE and RMSE for all
combination methods and table (13) presents the weights associated to the individual models
according to the different static combinations schemes where the time varying weights of DMA
technique corresponding to three different forecasting horizons, 1 step, 4 steps, and 8 steps, are
presented in figure (4 to 6). In general, we can observe that the dynamic combination technique
by DMA dominates the best model and all other static combination schemes for all forecasting
horizons except the 3 step forecast where EQ is the best combination method. Finally, with
exclusion of the third forecasting horizon, we did not face the famous puzzle of combination
forecasts that equal weight approach outperforms more complicated combination methods. The
reason behind that is we have initial heterogeneous models where each model has its specific
information and some specific features

6. Conclusion and Policy Implications

Inflation forecasts are highly important in the actual management of monetary policy,
especially under an inflation targeting regime. Therefore, central banks must have accurate
inflation forecasts. Additionally, since understanding the risks included in inflation more fully
would improve anti-inflation policy settings, a density forecast could help improving inflation
forecasting. Therefore, the current paper applied the methodology proposed by Leon, Rubio
and Serna (2005) for modelling the relationship between inflation and time-varying conditional
heteroscedasticity, skewness and kurtosis.

The estimated univariate models include GARCH-M and TARCH-M models assuming that the
error term follows normal, student t, and GED distributions. Additionally, GARCH-M model
is extended to allow conditional skewness and kurtosis to follow GARCH type structure
assuming a Gram-Charlier series expansion for the normal density function. Moreover, two
multivariate GARCH models, diagonal VECH and DCC are estimated. Results indicate the
existence of significant persistence in conditional variance, skewness and kurtosis.
Additionally, comparing different models through examining the behavior of standardized
residuals, and conducting the likelihood ratio test revealed that GARCHSK-M model
outperforms other models with time invariant volatility, skewness and kurtosis. Additionally,
we assessed the prediction ability of these models for different forecasting horizons ranging 1
quarter to 8 quarters, as inflation in actual policy conduct is likely to be forecasted in a two-
year horizon. According to Root Mean Square (RMSE) criterion, GARCHSK-M has lower
forecasting accuracy compared to the basic univariate models. In contrast, GARCHSK-M
outperforms all competing models in terms of Theil Inequality Criterion (TIC) over different
forecasting horizons. Moreover, results of an encompassing test introduced by Diebold and
Mariano (1995) showed that the all competing models are not encompassed by the best Model
according to RMSE over the different forecasting horizons. This implies that these models
could be combined together to form a single forecast. The combination of forecasts are done
using three different combination methods: equal weights, BMA, Dynamic combination
Average (DMA). Based on these three approaches, there is an evident that the combined
forecasts outperform the prediction of the best forecast of individual models.

Based upon conclusions drawn above, the Central bank of Egypt should take into consideration
the higher order conditional moments of inflation in constructing their future forecasts. In
addition, the use of combined forecast to form the inflation predictions is highly recommended.
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Moreover, the positive correlation between inflation and its higher order moments suggests
that the Central Bank of Egypt should aim at achieving low average inflation rate to decrease
the negative consequences of uncertainty.

Finally, since the likelihood function is highly nonlinear, the employed methodology is limited
by the fact that using different optimization algorithms could lead to different estimates and
standard errors. Another limitation is that the model is very sensitive to the choice of the
starting values. Specifically, setting the initial values of the parameters to zero or close to zero
would result in the existence of many local maximum of the likelihood function. Therefore,
special care should be taken by setting the initial values away from zero to avoid the possibility
of various local maxima. This research could be extended in many ways, such as the inclusion
of other financial variables that might help in understanding the behavior of inflation dynamics,
such as money supply and interest rate. In addition, applying more recent techniques of forecast
combination is encouraged.
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Figure 1: Quarterly Inflating Rate for The Period (1957:1 to 2007:1)
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Figure 2: The Dynamic Correlation between Inflation and Both Growth of Domestic
Credit and Exchange Rate
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Figure 3: Covariance between Inflation and Both Growth of Domestic Credit and Real
Exchange Rate from VECH
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Figure 4: Weights Assigned to Different Models for One Step Ahead Forecast
According to DMA
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Figure 5: Weights Assigned to Different Models for Four Step Ahead Forecast According
to DMA
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Figure 6: Weights Assigned to Different Models for One Step Ahead Forecast
According to DMA
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Table 1: Descriptive Statistics of the CPI Inflation 1957:1 to 2007:1)

Mean 0.020112
Median 0.011963
Maximum 0.115602
Minimum -0.032790
Std. Dev. 0.023657
Skewness 1.159574
Kurtosis 4.437183
JB 62.03284
JB- p value 0.000000

Table 2: Estimates of GARCH-M and GARCHSK-M Model for Inflation (1959:2
2007:1):

Mean equation:tt, = ph+oay T + 0T, + &

Variance equation:  h, = B, + B1€21 + Bohi_q + K,d74 + k,d91
Skewness Equation: s, = ¥y + ¥1m3_1 + V2Se-1

Kurtosis Equation: k., = 8, + §; nf_q + 8,k,_4

Model GARCH-M GARCH-M (t-dist) GARCH-M (GED) GARCHSK-M
estimate p-value estimate p-value estimate p-value
n 10.70487 0.0131 9.962059 0.0122 15.46914 0.0014 15.84766 0.0000
Mean oy 0.362465 0.0002 0.357985 0.0000 0.312845 0.0003 0.397144 0.0000
Equation a, 0.286111 0.0000 0.294950 0.0000 0.278038 0.0000 0.305546 0.0000
Bo 9.61x10° 0.0001 6.52x10° 0.0349 8.52x10° 0.0039 0.000138 0.0000
Variance B4 0.507907 0.0000 0.449118 0.0029 0.354863 0.0005 0.393293 0.0000
equation B, 0.186655 0.0948 0.418660 0.0012 0.294235  0.0289  0.255495  0.0000
ky 0.000376 0.0321 0.000383 0.0861 0.000389  0.0268  0.000474  0.0000
k, -0.00043 0.0166 -0.000436 0.0617 -0.000435  0.0165  0.000210  0.0000
t-dist 4.651882  0.0093
Yo -0.147913 0.0000
Skewness Y1 -0.049117  0.0000
Equation Y2 0.005199  0.3382
8o 0.972210 0.0000
Kurtosis 5, 0.010863 0.0000
Equation S, 0.588909  0.0000
Log-likelihood 511.8632 518.4956 509.9896 928.0167
SIC 502.73 508.2005 500.8564 912.0178
L jung-Box Q-stat.
&:(lag 10) 7.2396 0.612 5.7162 0.839 6.4304 0.778 9.2325 0.510
&? (lag 10) 6.0200 0.814 10.070 0.434 7.6228 0.666 6.2244 0.796
&2 (lag 10) 4.2962 0.933 6.2089 0.797 3.9793 0.948 6.6910 0.754
& (lag 10) 4.3453 0.930 5.0324 0.889 2.9250 0.983 5.6119 0.847

Notes: All models are estimated using ML estimation using Marquardt algorithm. Significant p-values are indicated by bold. t-dist. is the
estimation of degrees of freedom of t-distribution, GED parameter is set to equal 1.5.

Table 3: Estimates of TARCH-M Models with Different Distribution (1959:2 2007:1):

Mean equation: my = phytay me_y +ame_y + &
Variance equation:  h, = Bo+B1€2 1 + Bohi_q + Bsel (1 <0) + k1 d74 + K,d91
Model TARCH-M TARCH-M (t-dist) TARCH (GED)
estimate p-value estimate p-value estimate p-value

u 19.72773 0.0002 8.029947 0.0561 26.65659 0.0002

Mean equation oy 0.254268 0.0017 0.390537 0.0000 0.171016 0.0921
a, 0.298124 0.0000 0.385944 0.0000 0.272075 0.0000
Bo 0.000111 0.0021 5.13x10° 0.0124 9.17E-05 0.0072
B4 0.772270 0.0016 0.583225 0.0002 0.503393 0.0030

Variance B, 0.197225 0.0559 0.587646 0.0000 0.324831 0.0520

equation B3 -0.702725 0.0081 -0.467132 0.0269 -0.495986 0.0063
ky 0.000416 0.0015 0.000172 0.0000 0.000428 0.0156
k, -0.000481 0.0003 -0.000222 0.0000 -0.000466 0.0114

t-dist 1.230947 0.0000

Log-likelihood 509.0635 511.7202 513.3198

SIC 498.7886 501.4453 503.0449

Ljung-Box Q-stat.

&:(lag 10) 9.5904 0.477 6.1276 0.804 6.4377 0.777

&? (lag 10) 8.1273 0.616 9.5734 0.479 6.7644 0.747

&f (lag 10) 7.9010 0.639 6.1072 0.806 4.5032 0.922

g (lag 10) 7.6536 0.663 4.5840 0.917 5.5914 0.848

Notes: All models are estimated using ML estimation using Marquardt algorithm. Significant p-values are indicated by bold.t-dist. is the
estimation of degrees of freedom of t-distribution
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Table 4: Variance and Covariance Estimates of MGARCH Models(1959:2 2007:1):

For DCC model: Mean equation: each variable is regressed on a constant, AR(1) term and a dummy of ERSAP.
Variance equation:h, = Bo+B1e21 + Boh—1 + Bael1(ge-1 < 0)
For Diagonal VECH: Mean equation: VAR system includes 5 lags as suggested by AIC, LR and FPE criterions

Variance equationh;;, = ¢;; + @;;€e—1 &1 + Bijhije—1 fori,j=123
DCC models VECH model
Domestic credit inflation Exchange rate
estimate p-value estimate p-value  coef estimate p-value
Bo 0.000423 0.0366 0.00025 0.0001 0.000181 0.0165 C11 0.000421 0.0146
B4 0.44730 0.0250 0.25704 0.0253 0.192352 0.311 Cy2 0.000140 0.0072
B, 0.55812 0.000 0.56328 0.0003 0.679877 0.000 C33 0.000409 0.0000
B3 -0.43214 0.0652 -0.505 0.0001 -0.2358 0.240 ayq 0.186230 0.0759
a, 0.414618 0.0005
a3 0.526830 0.0008
@y 0.923093 0.0000
Ay3 0.932919 0.0000
Q33 0.940357 0.0000
Bis 0.645619 0.0000
B1z 0.437165 0.0000
Bis 0.608988 0.0000
Baa 0.296015 0.0001
Bas 0.412361 0.0000
Bas 0.574435 0.0000
DCC 0, 0.073274 p-value  0.0089
parameters 0, 0.736037 p-value 0.0000
Log likelihood 1454.730 1772.009
Ljung-Box Q-stat.
&:(lag 10) 13.974p-value 0.174
£2(lag 10) 10.193p-value 0.424
Table 5: Descriptive Statistics for Standardized Residuals
Statistic GARCH-M  GARCH-M  GARCH-M  GARCHSK-M TARCH-M  TARCH-M (t- TARCH-
(t-dist) (GED) dist) M (GED)
Mean 0.144754 0.146564 0.117104 -0.287924 0.081321 0.122737 0.051905
Median 0.160837 0.130266 0.105250 -0.397040 0.112671 0.075155 0.077206
Maximum 3.530883 4.205050 3.847917 2.798154 2.997394 4.360491 3.134593
Minimum -3.020946 -2.619032 -2.635134 -2.496532 -2.66827 -2.489662 -2.81767
Std. Dev. 0.993460 0.982665 1.010568 0.757900 0.997981 1.020606 0.994028
Skwness 0.153516 0.589360 0.304888 0.335242 0.114134 0.617398 0.173971
Kurtosis 4.364631 5573321 4.300026 4.900875 3.783390 5.190361 3.896186
Jarque-Bera 15.65190 64.75849 16.49515 32.50300 5.326449 50.57923 7.393699
Probability 0.000399 0.000000 0.000262 0.000000 0.069723 0.000000 0.024802
Table 6: Descriptive Statistics for Conditional VVariances
Statistic GARCH-M GARCH-M GARCH-M GARCHSK TARCH-M TARCH-M (t- TARCH-
(t-dist) (GED) -M dist) M (GED)
Mean 0.000565 0.000685 0.000537 0.001056 0.000525 0.000639 0.000484
Median 0.000241 0.000281 0.000234 0.001077 0.000226 0.000347 0.000203
Maximum 0.006818 0.006606 0.005019 0.006248 0.005700 0.004914 0.003769
Minimum 5.22x10° 2.34x10° 5.61x10° 0.000187 5.75x10° 4.28x10°® 8.03x10°
Std. Dev. 0.000769 0.000859 0.000637 0.000786 0.000657 0.000741 0.000494
Skewness 3.991448 2.822785 2.894833 2.386306 3.710096 2.557875 2.249937
Kurtosis 27.44630 15.68171 16.67755 14.44898 2471681 12.35400 12.57099
Jarque-Bera 5290.785 1557.643 1764.765 1230.856 4213.434 909.3453 894.8217
Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table 7: Likelihood Ratio Tests
GARCH-M vs. GARCHSK-M
Logl(GARCH-M) 928.0167
Logl(GARCHSK-M) 511.8632
LR 839.3032
p-value 0.00000
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Table 8: Different Criterions of Predictive Power

1. Root Mean square error

2. Theil inequality coefficient

Bias Proportion

Variance proportion

Covariance proportion

TIC =

T+N
N z (#y — mp)?
t=T+1

1 T+N

N tarer (e — )2

J1

TN 52
N t=T+1T[t+\/_

BP =

VP =

CcP =

F-n)’

(O_ﬁ B O-n)z

2(1 —1)ozo,

1
N

1 N
N i (e — m)?

1 ~
NZE%VH(T& —mp)?

1 N
NZE%VH(W —mp)?

T+N 2
t=T+1""t

Notes: Where a5, ,; are the biased standard deviations of tand m, and r is the correlation between of #and .4

Table 9: Out-of Sample RMSE Criterion of Different Models for Various Horizons

GARCH  GARCH TARCH-M TARCH-M GARCHSK- MGARCH MGARCH

GARCH-M -M (t-dist) -M (GED) TARCH-M (t-dist) (GED) M DCC BEKK

H=1 0018695 0019713 0018248 0019334  0.018071 0018625 0020791 001750  0.022134
[5] [7] [3] [6] [2] [4] [8] [1] [9]

H=2 002041 0021128 0020406 0021683  0.020726 0020805 0020857  0.021217  0.021176
[2] (6] [1] [9] [3] [4] [5] [8] [7]

H=3 0021139 0021129 002178 0022864  0.021812 0.022194 002192 0021316  0.021998
[2] [1] [4] [9] [5] 8] [6] [3] [7]

H=4 0021184 0020837 0021637 0021525  0.021928 0021321 0022012  0.021965  0.023438
[2] [1] (5] [4] [6] [3] [8] [7] [9]

H=5 0020644 002035 0020729 0019819  0.019552 0019679 0022367 0021112  0.021485
5] [4] (6] [3] [1] [2] [9] [8] [7]

H=6 0019494 001991 0019738 0020348  0.018462 0.019457 002218  0.020196  0.019662
[3] [e] 5] [8] [1] [2] [9] [71 [4]

H=7 0017371 0019151 0019022 0019598  0.019278 0019264 0021941 0019223  0.0211
[1] [3] [2] [71 [6] [5] [9] [4] (8]

H=8 001917 0019593 0019933 0018917  0.020937 0019201 0023198  0.019605  0.020815

[2]

[4]

[6]

[1]

(8]

3]

[9

[5]

[7]

Notes: The numbers in the square brackets indicate rankings of the models where [1] indicates the best models. H refers to the forecasting

horizon.
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Table 10: Evaluation of Out-of Sample Forecasts Power of Different Models Using TIC
and Its Components Criterions

GARCH-M GARCH-M GARCH-M TARCH-M TARCH-M TARCH-M GARCHSK MGARCH MGARCH

(t-dist) (GED) (t-dist) (GED) -M DCC BEKK

H=1 TIC 0363854  0.982952 0358889 035254  0.338452  0.34205 0302587  0.36222  0.4265
BP 0099504 0.6776532  0.11804631  0.04446 00507977 0.0426786  0.285806  0.21863  0.05725

VP 0249546  0.314733 0.29127 007196 0219993 0133012  0.068299  0.4727  0.1829

CP 065095 00076135 0590683390  0.88357  0.7292090 0.8243092  0.645895  0.30865  0.7597

H=2 TIC 0420821  0.426045 0427583 041340 0406722  0.39857 030065  0.46036  0.4065
BP 0204543 0.1628098  0.23261685  0.10701  0.1166622 0.1043012  0.247444 027745  0.0874

VP 0321693 02386596  0.35816646  0.09506  0.2460877  0.1453142 0044533 040619  0.19189

CP 0473765 05985304 040921668 079792  0.6372499 0.7503844  0.708024  0.32805  0.71257

H=3 TIC 0438909 0426471 0462651 043563 0428863  0.426805 031443 046508  0.43011
BP 0230208  0.200475 0259972 011802 0136794  0.122085 0224175 031078  0.13033

VP 0166406  0.407493 0048039 011245  0.184938  0.076312 0301212 020231  0.29212

CP 0477671 059721 0438816  0.80566  0.678268  0.76546 0727786 028172  0.70325
H=4 IC 0444631  0.423783 0463127 041491 0427826  0.414069 0318861 047891  0.47612
BP 024956  0.227199 0285687  0.15648 014781  0.57556  0.196942  0.30125  0.18063

VP 0335454  0.225844 0321924 010172 0141726  0.129848 0066071 037716  0.17135

CP 0414986  0.546956 0392389 074178 0710464 0712596  0.736988  0.31866  0.64801
H=5 TIC 0457764  0.451798 0484275 040788 0410668  0.409337 0329224 050776  0.46485
BP 0286904  0.280964 0342037 019451 0204605  0.194762 0244933  0.38045  0.22828

VP 0377908  0.256781 0403163 011354 0187152  0.156592  0.021517 048775  0.16628

CP 0314396  0.462256 0.2548 069192  0.608243  0.648645 0733549  0.1318  0.60543

H=6 TIC 0475717  0.474442 0501826  0.44549 0419869  0.433237 0336506 052101  0.45689
BP 0306922 0.273113 0374432 016879 0229835  0.186327  0.304728  0.38417  0.27288

VP 0344957  0.240325 0438324 007858 0201703  0.133976  0.006801 047155  0.15050

CP 0348121  0.486562 0187244 075263 0568462  0.679697  0.688471  0.14107  0.57661

H=7 TIC 0443149  0.480644 0511155 044375 0460163  0.446261  0.343699 052328  0.50612
BP 0351619  0.286373 0382762 015516 0198514 017115  0.341344 039295  0.19653

VP 0349239  0.208344 0418577 005369 0150501  0.09663 000643 049988  0.09661

CP 0299142  0.505283 0198661 079114 0650985 0732219  0.652226  0.09960  0.67733

H=8 TIC 0451423  0.497017 0529578 045877 0433467 0467717 0293675 052490  0.53386
BP 0367816  0.293385 0392099 016197 021902  0.179934 0420356 041277  0.21872

VP 0344212  0.185285 0395252  0.04975 0.1278 0084253 0008512 050333  0.08537

CP 0257243  0.500927 0.18389 078003  0.833853  0.726696  0.649427 008133  0.68157

Notes: The best model corresponding to each criterion over different horizons is written in bold. H refers to the forecasting horizon.

Table 11: Diebold and Mariano (DM) Test

GARCH-M GARCH-M GARCH-M TARCH-M TARCH-M TARCH-M GARCHSK MGARCH MGARCH
(t-dist) (GED) (t-dist) (GED) -M DCC BEKK

H=1 1458992 1492113 145896  1.44863 1.45668 1452802  1.402642 o 147174
(0.07228)  (0.06783)  (0.07228)  (0.0737) (0.0726) (0.0731) 0.080362 (0.0705)
H=2  -0.15979  -0.718046 ok -0.1653  0.049276 -0.067375  -0.13379  0.07662  -0.3046
(0.4365) (0.2363) (0.4343) (0.4803) (0.4731) (0.44678)  (0.4694)  (0.3803)

H=3  -0.00316 ok -0.209487  -0.2860  -0.178037 -0.30003 -0.03094  -0.0408 -0.1276
(0.4987) (0.4170)  (0.3874) (0.4293) (0.3821) 0487659  (0.4837)  (0.4492)

H=4  -0.15002 o -0.366954  -0.1491 -0.24206 -0.1917 -0.0451 -0.3204 -0.2720
(0.4403) (0.3568)  (0.4407) (0.4043) (0.4239) (0.4819) 0.3743 (0.3927)

H=5  -0.10364  -0.227974  -0.32143  -0.0979 ok -0.049223  -0.113005  -0.2868 -0.1649
(0.4587) (0.4098) (0.3739)  (0.461) (0.48037)  (0.45501)  (0.3871)  (0.4345)

H=6  -0.27653  -0.271964  -0.310418  -0.0615 ok -0.1720 -0.15768  -0.2981 -0.0911
0.39107 0392825 0378121  (0.4754) (0.4317) (0.4373)  (0.3828)  (0.4636)

H=7 o -0.47247 -0.2873 -0.2411 -0.23165 -0.28025 -0.19892  -0.2585 -0.5165
(0.31829)  (0.3869)  (0.4047) (0.4084) (0.3896) (0.42112)  (0.398)  (0.3029)

H=8 0263896 0059182  0.05778 ook 0.046206 0.033042 006991  0.06076  -0.0829
(0.395) (0.4764)  0.476962 (0.4815) (0.4868) (0.4721)  (0.4757)  (0.4669)

Notes: ***indicates that the model is the best one at the corresponding forecasting horizon. The number between brackets are the probability
of the test statistic.
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Table 12: Out-of Sample Forecasts Power of Different Combination Methods

Criterion H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
Best model

MSE 0.000306 0.000416 0.000446 0.000434 0.000382 0.000341 0.000302 0.000358
RMSE 0.017503 0.020406 0.021129 0.020837 0.019552 0.018462 0.017371 0.018917
Equal Weights (EQ)

MSE 0.000314 0.000371 0.000404 0.000398 0.000341 0.000307 0.000292 0.000318
RMSE 0.01771 0.019272 0.020103 0.01995 0.018456 0.01753 0.017094 0.017823
Bayesian model averaging (BMA)

MSE 0.000295 0.000355 0.000406 0.000183 0.000338 0.000257 0.000285 0.000329
RMSE 0.017172 0.018854 0.020148 0.01353 0.018391 0.016017 0.016867 0.018148
Dynamic Model Averaging (DMA)

MSE 0.000133 0.000344 0.000432 0.000181 0.000303 0.000217 0.000237 0.000154
RMSE 0.011549 0.018534 0.020785 0.013465 0.017413 0.014737 0.015392 0.012402

Table 13: Bayessian Model Average Weights

GARCH-M GARCH-M GARCH-M TARCH-M TARCH-M TARCH-M GARCHSK-  DCC BEKK
(t-dist) (GED) (t-dist) (GED) M

H=1 0067724 0067724  0.137949 0067724  0.135448 0067724  0.075477 _ 0.374001 _ 0.006228
H=2 001858  0.101893  0.156022  0.10181 0102002 0101624 0200494  0.072962  0.061336
H=3 0105897 021279  0.113756  0.107715 0115231 0109746 0106074  0.109762  0.110541
H=4 0110024  0.114588  0.112444 010716 0112002 0108586 0110807  0.114097  0.110292
H=5 0111115 0110642  0.110088  0.110362  0.110226 0110459  0.117276  0.109987  0.109844
H=6 0083204 0079913 0078737 0076998 0115099 0072726 0277065 0151469  0.06479
H=7 0146743 0089894 0092044 0087965 0088377 0087661 0127142  0.145691  0.134483
H=8 0075629  0.096739  0.207075  0.158825  0.099929  0.10046  0.079033  0.08909 0.09322
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Appendix

1. Calculation of Both Growth Rate of Domestic Credit and Real Exchange Rate

The credit growth rate reflects the rate of increase in the domestic credit level, and is computed
using the domestic credit volume, which measures the money amount lent to private agents
inside the economy. The domestic credit growth is calculated as:

CLt - CLt—l
CLi1
Where CD; is the credit Growth in period t, CL, is the level of domestic credit.

CD, =

Real Exchange Rate is calculated as:

Egypt CPI,
US CPI;

This implies that the higher value for REX, means depreciation in the Egyptian pound value.

REX; = nominal exchange rate for dollar per Egyptian pounds; *

Finally, the change in real exchange rate is calculated as
_ REXt - REXt—l
* = TTREX,

2. Preliminary Examination of Data of Multivariate GARCH Model
Table Al: Phillips-Perron unit root tests

100%

variable test statistic 5% critical value Result
inflation -12.63888 -2.874086* 1(0)
Growth of domestic credit -15.02129 -2.874086* 1(0)
Rel exchange rate -8.957970 -2.874086* 1(0)

Notes: * indicate the rejection of the null hypothesis of the existence of unit root | each series
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