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Abstract 

Combining the measure of water availability and the socioeconomic capacity to access to it 
gives new insights in the fields of water resources management and poverty alleviation. This 
approach lets researchers think about a new multidimensional water scarcity indexes as 
applied to the definition of the Water Poverty Index (WPI) by Sullivan (2002) in “Calculating 
a Water Poverty Index”. In the methodology initiated by Sullivan and Lawrence (2002) water 
for the calculation of the WPI was based on equally weighted average for its five components 
(Resources, Capacity, Access, Use, and Environment) to produce a single components 
Indexes scores. The main objective of this paper is to improve this procedure by using an 
objective weighting scheme. For this purpose we use a principal component analysis to give 
more weight to components with larger variance and to discard components with smaller 
ones. This improved WPI is applied, thanks to a rich data set collected by our own efforts, to 
the case of Tunisia. We have obtained high-quality results which could help policy makers to 
devise better policies to alleviate water poverty in the Inland region which was the bed of the 
Tunisian revolution beginning. 

JEL Classifications: C43, Q25 

Keywords: Water Poverty index, PCA, Tunisia, water resources, poverty alleviation. 
 
 
 
 

  ملخص
 

رؤى جدیدة  في مجالات إدارة الموارد المائیة والتخفیف المیاة یعطى توافر المیاه والقدرة الاقتصادیة والاجتماعیة للوصول إلى  مقیاسالجمع بین 

 (WPI)الفقر للمیاه ر ندرة المیاه كما ینطبق على تعریف مؤش حول الأبعاد ةمتعدد ةجدیدفھارس  التفكیر فى لباحثونلھذا النھج یتیح . من حدة الفقر

علѧى المتوسѧط  WPI لحسѧاب) 2002(بѧدأھا سѧولیفان ولѧورانس  التѧى منھجیѧةال قѧومت". حساب مؤشر الفقر المائي"في ) 2002(من قبل سولیفان 

والھدف الرئیسي من . المكونات حدومفھرس لإنتاج ) والبیئة ستخداملاالوصول، واوالموارد والقدرات (خمسة المرجح على قدم المساواة لمكونات 

لھذا الغرض نستخدم العنصر الرئیسي في التحلیل لإعطѧاء وزنѧا أكبѧر لمكونѧات . ترجیح الھدفتحسین ھذا الإجراء باستخدام نظام ھذه الورقة ھو 

التي تم جمعھا والبیانات  من مجموعة غنیة، وذلك بفضل  إلى حالة تونس WPI  المؤشر المعدل من یتم تطبیق. صغرالأوتجاھل المكونات التباین 

التي یمكن أن تساعد واضعي السیاسات على وضع سیاسات أفضل للتخفیف من حدة ولقد حصلنا على نتائج عالیة الجودة . جھودنا الذاتیة،قبل من 

 .بدایة الثورة التونسیةھد م تالفقر المائي في المنطقة الداخلیة التي كان
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1. Introduction 
Combining the measure of water availability and the socioeconomic capacity to access to it 
gives new insights in the fields of water resources management and poverty alleviation. 
MikaïlDésamorcer (2007)shows that water shortage is rather a question of means than of 
resource availability. The reality that large populations of some water rich countries have no 
access to fresh water and sanitation while dry regions, with high standard of living, benefit 
from very good water services (Kuwait, Qatar, Emirates, or the huge Los Angeles 
agglomeration) is an illustrative example. Hence, a water resources management modeling, 
which ignores the explicit integration of the economic and environmental factors, will leadto 
failure. Intensive research has been conducted during the last decade to fill this gap. This 
literature was essentially concerned with the construction of the Water Poverty Index (WPI) 
and its application to several countries. 
The WPI is based on five components: Resources, Access, Capacity, Use and Environment as 
argued byLawrence (2002). It can be used then through its individual figures or in the form of 
its components as an inter-disciplinary and monitoring tool that expresses precisely the water 
situation in various areas. Sullivan (2003) suggested that the WPI is applicable at a range of 
scales. It has since been applied at an international scale byLawrence (2002),at a water and 
community scale byHeidecke (2006) and discussed in several papers Molle (2003), 
Rijsberman (2006), Shah (2006)and recently improved by Manandhar (2011) andPérez 
(2011) . 
The main objective of this study was twofold:   

 Firstly we have tried to improve the theoretical and statistical calculation of the WPI and 
its components. While we use, here, the methodology initiated by Sullivan and Lawrence 
for the calculation of the WPI based on equally weighted average to produce single 
components Indexes scores, we will refine this procedure by using an objective weighting 
scheme. For this purpose we use a principal component analysis to give more weight to 
components with larger variance and to discard components with very smaller variance. It 
can be argued that this technique gives a mathematical solution for the problem of 
arbitrary choice of weighting scheme by considering determined characteristic vectors of 
the correlation matrix of the original variables as weights. PCA can also be used for 
objective selection of a smaller set of uncorrelated variables among a wider range of 
initial variables, accounting for most of the variation in the data set of 
multivariate(Morrison1967 ;Dunteman1989). To reduce the cost of information collecting 
and to get a smaller number of sub-indexes in the construction of WPI, which is 
obviously the main purpose of the present study, we use the PCA method B4, 
recommended by Jolliffe (1972).  

 Secondly we have conducted an application, thanks to a rich data base collected by our 
own efforts, for the case of Tunisia. Our results show us clearly that the Inland region, 
which is naturally well endowed with water resources, is characterized by very low WPI, 
while the coastal governorates, naturally water stressed, have high scores of WPI. These 
results, issued from the Revolution, which started in the poor Inland governorates, will 
help future Tunisian policy makers, to correct those inequalities by promoting a better 
water access essentially to the inland rural populations.  

The remainder of the paper is structured as follows: in Section 2, the classical approach of 
water scarcity assessment is briefly described and compared to the multidimensional one. The 
water poverty linkages are depicted in the following section (Section 3). While Section 4 is 
devoted entirely to the improved water poverty index methodology. We will provide also, in 
this section, a brief overview of data used in the empirical investigations. The analysis of 
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empirical results and water poverty mapping are presented in Section4. The last Section 
presents conclusions and some policy recommendations.  

2.  Review of Existing Water Scarcity Indices 
During the last two decades, numerous unidimensionnels indices, based particulary on 
Human Water Requirements and Water Resources Vulnerability have been developed to 
quantitatively assess water stress Brown (2011). Nevertheless, the main weakness of these 
indices is the difficulties of integrating all aspects which characterize water resources 
(availability, use, supply, scarcity, network, etc). To address this problem, methodology used 
for calculating water scarcity indices has evolved remarkably in the last decades. In 1989, 
Falkenmark proposed his first water scarcity indicator defined as the fraction of the total 
annual runoff available for human use. Based on three thresholds, the water conditions in any 
area can be categorized as: no stress, stress, scarcity, and absolute scarcity as noted in the 
following Table. 
In spite of its global acceptance in assessments on international scale, the Falkenmark index 
was used to characterize water situation at a smaller scale where the data is available. But, 
this indicator, as other unidimensionals indices, has enormous shortcomings. On the one 
hand, only physical water scarcity is considered; the water quality information and country's 
ability to use the resources are omitted. On the other hand, the water availability per person is 
assessed as an average with neglect of both temporal and spatial variability in certain regions 
within a country. 

Recognizing that water use is more important than water availability, Gleick (1996) 
developed an improved water scarcity index by including specific and basic Human Water 
Requirements (BWR) such as drinking, cooking, bathing, sanitation and hygiene 1. But this 
indicator has not been applied on a regional scale; it has only been used at the country-level. 
The Gleickapproach has also been criticized for neglecting water quality, industrial and 
agriculture uses. In fact, the domestic water use data are insufficient and unreliable, thus 
other water users, such as industry, agriculture or nature itself, need to be included in the 
assessment of water poverty. 

In response to the critics above, Meigh (1999) took in the GWAVA (Global Water 
Availability Assessment) model, the temporal variability of water supply into account. 
Moreover, the Meigh's index includes surface water as well as groundwater resources, and 
compares the total amount to the domestic, industrial and agricultural demands. 

Ohlsson (2000) integrated, for the first time, the new concept ``adaptive capacity'' founded on 
how economic, technological, or other factors affect the overall freshwater availability status 
of a region. Ohlsson argued that the capability of a society to adapt to difficult scenarios 
depends on the distribution of wealth, education opportunities, political participation and 
others factors. 
Since the main contribution of Sullivan (2002), the concept of Water poverty index has 
known many theoretical developments as well as several applications at international and 
regional scales. The WPI is a holistic tool, built on Sen's thought, designed to capture the 
linkages between issues related to water resources availability and human and ecological 
needs (Sullivan2003;Sullivan2005;Lawrence200;Mlote2002). Both water resource managers 
and policy makers can take advantage of this composite index to analyze the links between 
poverty, social deprivation, environmental integrity, water availability and health 
(Sullivan2002). 

                                                        
1In his approach, Gleick (1996) quantified the total of proposed water requirements for meeting basic human 
needs  as 50 liters per person per day. 
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Sullivan (2002) enumerated four possible methods for the calculation of WPI: time analysis 
approach, gap method, matrix approach and composite index approach. In this paper, we will 
focus on the last one; which is based on identifying the physical, socioeconomic and ecologic 
dimensions of water poverty. The WPI is calculated then as an equally weighted average of 
these dimensions. 

Initially, Sullivan (2002) considered the WPI formula as follows (Eq.1):  

))(100(
3
1= TwSwAwWPI tsas         (1) 

where A is the adjusted water availability (AWA) assessment including the surface water and 
groundwater resources as percentage, while S is the proportion of the population with access 
to safe water and sanitation, T is the index (between 0 and 100) to represent time and effort 
taken to collect domestic water and tsa www ,,  are the weights given to each component of the 
index (so that the sum of weights is equal to 1 ). All the three components are range between 
0 and 100 and to obtain the value of WPI between 0 and 100 the sum of component is divided 
by three. 

Lawrence (2002) in his application has modified the structure of the indice to get a more 
comprehensive and simple composite index with five components: Resources, Capacity, 
Access, Use, and Environment (see the following equation Eq.??).  

ENVUSEACCCAPRESWPI EUACRcl  =    (2) 

 where RES, CAP, ACC, USA and ENV denote respectively the five components fore-
mentioned; and 0.2===== EUACR   their weights. Since all the components are 
expressed on a scale from 0 to 100 with higher values indicating a better water situation, 

clWPI  ranges from 0 to 100. The same formula of the WPI was recently adapted by Heidecke 
(2006), Komnenic(2009) and Manandhar (2011) to develop composite WPI for different 
scales. 

In spite of agreement on the relevance and the usefulness of the index and the recognition of 
the multidimensional nature of water poverty, the computation of the WPI, like that of any 
other composite index, is fraught with conceptual and practical weaknesses. This research 
will try to overcome some of them. 

Feitelson(2002),Sullivan(2002),Molle(2003), Jiménez (2009) and Giné (2009) discuss 
various issues in the construction and uses of the WPI. Some criticsconcerns are how the 
basic input data are selected and combined andthe statistical properties of the index. Dealing 
with data, the ad hoc variables selection is subject to criticism. As noted by Booysen (2008) 
using the availability and accuracy of data can guide by itself the selection of variables 
mainly in data-scarce contexts. It must be said that WPI is closed to the existing data, rather 
to the data needs identified regardless availability Sullivan (2003). The WPI has also proved 
to be inadequate for evaluating the complexity of water problems, Sullivan (2002) and 
Lawrence (2002)2 themselves argue that the index has some issues concerning defining and 
including physical water availability, water quality, ecological water demand and institutional 
impacts of water shortage. They have noted also that the information is in the five 
components (Resources, Capacity, Access, Use and Environment) rather than in the final 
aggregate index. 
In the same vein, the WPI has also been criticized for its inability to reveal some details that a 
single variable alone can offer such as the water supply fluctuations and water allocation 
                                                        
2The first users of the Water Poverty Index 
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issues among users.Gleick (2002) andShah (2006)noted in this regard that the main indicator 
of water poverty is the access component of the WPI.  
The weighting and aggregation methods are another major drawbacks that affect the 
statistical proprieties and interpretability of final values of the indice (Munda2005). The 
undefined weights accorded to the components of the WPI are subject to individual 
judgments (Feitelson2002), even when the equal average weighting is inadequately 
explained. Similarly, Molle (2003)  criticized the WPI for assigning arbitrary weights to 
disparate and correlated components. Thus a transparent display of determined weights is 
highly recommended to avoid misinterpretation (Heidecke2006). To this end, a multivariate 
analysis has been used in order to determine the correct weighting scheme and to avoid the 
problem of multicollinearity between variables (Cho2010;Pérez2011). Furthermore, Munda 
(2005) stated that additive aggregation necessarily implies full compensability, which is often 
not desirable, among the various components of the WPI. Additive aggregation induces 
necessarily the fact that high values of some components can sufficiently offset the poor 
performance of others. 

In sum, the significance of the WPI and its usefulness as a meaningful policy tool tend to be 
spoilt by these fore-mentioned shortcomings. That's why we propose in this paper some 
improvements to avoid these drawbacks and to get a meaningful, robust and enhanced WPI.  

3.  Water and Poverty Linkages 
Recently, there is an increasing agreement that water is strongly related to poverty. However, 
these linkages are too complex to be depicted and analyzed; their nature and direction are 
unclear (Meigh1999). On the one hand, many assume that water has a positive effect on 
socio-economic development. Adopting this view, the massive investment in water 
infrastructure and promotion of water governance can make a contribution to both absolute 
and chronic poverty alleviation in developing countries by supporting such broad purposes as 
economic growth, rural and agricultural development and national food security. On the other 
hand, a contradictory view holds that in spite of these positive outcomes, water resources 
development can be considered directly or indirectly unsustainable and destructive to the 
environment. 

Despite the divergence of these two extreme views, there's an agreement that water resources 
play a vital role, either positively or negatively. Water can contribute to domestic welfare, 
agricultural production, industry and conservation of the environment, while it can brings 
water-borne diseases such as malaria and other dangerous diseases and causes a land 
degradation through water logging and salinization. 

In addition to these views, Savenije (2000) assumes that the lack of water for agricultural 
production is due principally to the physical limitation of water resources, while the lack of 
water for domestic purposes is, in most of the cases, linked to social, political and economic 
problems a community or country faces. These problems could be the main cause of low or 
lack of access to safe water which results directly or indirectly in decreasing human 
productivity. This closed loop nexus between poverty and shortage of water is often 
neglected in world wide discussions on poverty eradication. The new concept of ``water 
poverty'' offers a new dimension to clarify this neglected connection. Adopting the Saveiji's 
view, Salameh (2000) argues that water poverty can be defined as insufficiency of existing 
water resources for domestic use and food production to meet domestic and production needs 
and occurs when the water demand is less than the availability for the population of a certain 
area. In his definition, Salameh (2000) does not account for the social causes of water 
shortage.  
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4. Improved Water Poverty Index Methodology 
Based on thestudies of Sullivan (2001) and Sullivan (2003), our approach aims to realize an 
integrated assessment of resources availability, socio-economic characteristics and ecological 
dimensions of water poverty. A battery of indicators ( fourteen indicators ) were selected and 
sorted into five components as summarized in the following Table2. 
In the normalization step, various methods are developed so far; we selected, in this study, 
the most simplest and commonly used, the minimum-maximum method 3 to collate indicators 
into a standard comparable scale from 0 to 100 (Sullivan2003; Sullivan2005; Sullivan2007; 
Van2010). Generally, for each indicators, specific thresholds (or benchmarks) were used as 
maximum and minimum values.  

4.1  IWPI components 
The WPI framework adopted here, as cited above, consists of five components and 14 
indicators. Their conceptual description, calculation and normalization is developed as 
follows.  

Resources 
 The Resource component concerns the physical availability of water resources in the chosen 
study area (Tunisia). A higher value of this component reflects a better water situation4 (i.e 
abundant water resources with less variability). It combines four indicators divided into two 
sets; three indicators (RES1, RES2 and RES3) assessing respectively surface water 
availability5, phreatic groundwater availability, deep groundwater availability and one 
indicator measuring the variability of rainfall (RES4). In order to indicate the population 
pressure over available water resources, particulary the groundwater resources, the indicators 
RES2 and RES3 6 were measured on per capita basis (Ohlsson2000;Sullivan2001). Indicating 
a better water situation when they reached high values, the first three indicators of this 
component i.e. the availability indicators were normalized using min-max approach as shown 
in Eq.3 :  

100= 



minmax

mini

XX
XXRESj         (3) 

where RESj is availability indicators (j = 1, 2 and 3), minX  and maxX  are maximum and 
minimum values of considered variables (see Table2). The last indicator in the Resources 
component is the variability index (RES4) which measures spatial and temporal variation of 
water resources; due to lack of groundwater data, the coefficient of variation (CV) of rainfall 
can be used as a proxy for that variability indicator (Babel2009;Van2010;Manandhar2011). A 
higher value of CV imply higher variability of water resources which may also reflect higher 
climate induced risks and vulnerability of resources (Alessa2008;Hamouda2009). We stated 
that the CV greater than or equal to 40% means a most vulnerable situation 
(Manandhar2011). Thus, this variable is normalized as proposed by (Van2010) using the 
following Eq.4:  

                                                        
3Abbreviated usually as min-max 
4And vice versa 
5In the study area, per capita annual surface water resources data were not available at administrative boundaries 
(i.e., governorate level), whichis the reason thata rainfall variable is used as proxy measure of this important 
indicator of the Resources component. This variable, though may not give an accurate measurement, can still be 
useful for estimating water resources in scarce-data context (Heidecke2006). 
6The rainfall indicator isn't calculated on per capita basis as precipitation is generally measured in millimeters. 
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100)
0.4

(1=4  iXRES         (4) 

where iX  is the coefficient of the variation of rainfall of the thi  governorate. To obtain a 
reliable indicator of variability, the CV is calculated for each governorate using more than 25 
years of annual average rainfall data from selected meteorological stations.  

Capacity 
The Capacity component comprises a set of socio-economic indicators which can exhibit the 
effectiveness of people's ability to supply and manage water and sanitation services. 
Appelgren (1999) has emphasized the importance of such social and economic capabilities to 
managing water scarcity. The first indicator of this component, related to human welfare and 
quality of life, measures the economic capacity through the average per capita expenditure 
which is a simple and available variable. 

Higher value of this indicator means higher economic capacity to get sufficient safe water, to 
access regularly water resources and technology and to cope with water related stresses 
(Appelgren1999;Adger2004). It is normalized, like the availability indicator, as follows (see 
Eq.5 ):  

100=1 



minmax

mini

XX
XXCAP         (5) 

where CAP1 is value of the indicator ranging from 0  to 100  , iX , minX  and maxX  are 
respectively the current, minimum and maximum values of the considered variable. The 
remaining indicators of this component (Employment(CAP2), Education (CAP3) and Health 
(CAP4)) aimed to assess the social capacity that allows people to become aware of access to 
respectively improved water, sanitation, health and environment (Sullivan2003). As the 
parameters, expressed in percentage, unemployment and illiteracy rates are negatively 
correlated with the WPI i.e high values of these variables means that the region is in a worse 
situation, they are normalized as follows (Eq.6):  

j
iXCAPj 100=          (6) 

2
iX  is the unemployment rate (%) and 3

iX  is the illiteracy rate (%). 

The last indicator of the social capacity gauges the ability of the governorate to provide 
quality services for patients in hospitals. This variable is normalized to comparable range 0-
100 as follows (see Eq.6):  

100=4 



minmax

mini

XX
XXCAP         (7) 

Where iX  is the number of beds per capita and maxX , minX  are the minimum and maximum 
values of the variable.  

Access 
Regular and adequate access to improved drinking water encourages necessarily  better 
hygiene and sanitation conditions (Curtis2000) but is not sufficient to counter extreme 
poverty (Sullivan2003). Contrariwise, inadequate access to safe water will eventually lead to 
loss of time spent collecting water that could be used for productive activities. 
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Due to lack of data related to Access, this component includes only the access to water 
supply coverage indicator 7 which considers population with reasonable access to an adequate 
amount of safe drinking water for better health and well being 
(Sullivan2003;Sullivan2007;Hamouda2009). The access variable is expressed in percentage 
so we don't need a normalization to transform it in standardized form.  

Use 
The Use component is aimed to capture the use people make of water resources and its 
contribution to the wider economy because water use is a basic pre-requisite to various 
human activities and tends to increase with economic development (Sullivan2001). It 
combines the domestic and agricultural indicators, which are the main water uses in the study 
area. The domestic water use per capita (USE1) indicates the current level of water use in 
daily household activities like cooking, hygienic purposes and others (Howard2003) and 
reflects its future prospects (Sullivan2003;Cullis2004;Hamouda2009). Any difficulties of 
provision of safe water used domestically may cause a significant loss of time and effort in 
water collection. It is assessed by water use per capita per day and normalized as shown in 
Eq.8 using the same min-max approach used in previous indicators.  

100=1 



minmax

mini

XX
XXUSE         (8) 

Where the minX  is the minimum water requirement taken as a reasonable threshold of 20 
liters-per-capita-per-day (lpcd) (WHO/UNICEF 2000) and maxX , taken as 100 lpcd indicates, 
is the maximum water use that fulfills all water requirements (Howard2003). Governorates 
below the minimum have a lower value (USE1 = 0) and governorates above the maximum 
have a higher value (USE1 = 100). 
The second indicator to calculate the Use component is the agricultural water use (USE2); It 
reveals the irrigation facilities available in each governorate. There is evidence that 
development of irrigated agriculture improves agricultural production, stabilizes income and 
improves employment opportunities by reducing the natural risk of agricultural activities and 
contributing in livelihood improvement (Han2005;Saleth2003;Sullivan2003;Namara2010). 

The indicator used to assess this agricultural water use is the ratio of irrigated land to total 
area used for agriculture8 (expressed in percentage) (Sullivan2003). A lower and higher value 
reflects respectively lack and sufficient water for irrigation.  

Environment 
Finally, the Environment component comprised a number of indicators which not only cover 
water quality (ENV1) but also variables linked to ecological integrity such as the sanitation 
coverage rate (ENV2) and the number of environmental studies (ENV3). The water quality is 
assessed by the use of bacteriological analysis of drinking water; it's equal to the rate of fit 
cases after analysis. The second indicator (ENV2) is calculated by multiplying the total 
sanitation coverage by the urbanization rate. Sanitation services such as wastewater disposal 
and stormwater drainage are essential not only for healthy living but also for clean 
environment and improved water resources. 
The last indicator (ENV3), which is normalized as the economic capacity (Eq.5), reflects a 
general concern of the government for environmental issues in each governorate.  
                                                        
7Based on definition provided by the Joint Monitoring Programme (2000) 
8The most widely indicator of agricultural water use was the ratio of irrigated land to irrigable land (land 
suitable for irrigation). In our application, we have remarked that data of irrigable land did not reflect the true 
reality; thus we have decided to replace it with total land useful for agriculture. 
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4.2  Multivariate analysis 
Principal component analysis (PCA) is a traditional multivariate statistical method that uses 
an orthogonal transformation to convert a large set of possibly correlated variables into a 
smaller set of uncorrelated variables called principal components that still retain most of the 
information in the original data matrix (Dunteman1989;Morrison1967). Each principal 
component is a linear combination of the original variables with mathematically determined 
characteristic vectors of the correlation (or covariance) matrix as weights. Thanks to this 
multivariate technique we can solve the problem of arbitrary choice of weighting scheme 
(Cho2006). The first principal component explains the largest percentage of the variation in 
the original set of variables and the second principal component captures the second largest 
percentage of variation unaccounted for by the first and so on. Therefore the first few 
principal components account for the largest proportion of the total variation whereas the 
remaining principal components make fewer contributions. Generally, when we have p 
variables, p principal components, at most, can be extracted. Yet, when the data contains 
highly correlated variables, only a few principal components are extracted. The proportion of 
variation attributed to each principal component is calculated by dividing the associated 
characteristic root by the sum of all the characteristic roots which is the total amount of 
variation. Moreover, the PCA can be commonly used for objective selection of a few 
predictive variables to resolve the problem of multi-collinearity and double-counting 
(Bair2006). In this study, we have used the ``PCA method'' B4, described by Jolliffe (1972), 
in order to reduce the number of indicators per components in the construction of composite 
WPI. This method, recommended by Jolliffe (1972), entails retention of the variable that has 
the highest loading (or correlation) with the first principal component of the initial data 
followed by the variable that has the highest loading with the second principal component 
and so on until the selection of required number of variables. In this respect, Jolliffe (1972) 
suggests that the number of selected variables must be equal to the number of principal 
components that have characteristic roots of the correlation matrix greater than 0.7.  

5. Empirical Analysis 
5.1  Calculation of the five components indices 
Before applying PCA to data set and discarding correlated variables, we must analyze the 
overall significance of the correlation matrix of indicators for each component (i.e., 
Resources, Access, Capacity, and Environment) using Bartlett's sphericity test. It is also 
recommended, for each component, to test the factorability of all indicators collectively and 
individually using the known Kaiser-Meyer-Olkin Measure of Sampling Adequacy (MSA) 
(Hair2006). 
The Access indicator contains solely one variable, that's why multivariate analysis to 
calculate it is not needed. The Bartlett's test for the remaining sub-indexes, which indicated 
the presence of nonzero correlations, is significant only for Resources and Capacity 
indicators at the 0.01 level (see the Table3 for more details). Even the overall MSA values of 
these two indices, which looks both the correlations between variables and their patterns, are 
respectively 0.544 and 0.713 which are in the acceptable range (greater than the threshold 
value 0.5); thus we can proceed with principal component analysis. Regarding the Resources 
index, the individual MSA values are 0.532 for RES1, 0.545 for RES2, 0.514 for RES3 and 
0.580 for RES4; they are all higher than 0.5. 

As indicated in this table, we conclude that the first two principal components, associated 
with eigenvalues greater than 0.7 and accounting for approximately 91% of the four 
indicators variation, could be retained with respect to Jollifie criteria. The values of the 
characteristic vector associated with these two principal components extracted, reported in 
Table4, show that RES1 and RES2 have respectively the higher loading (correlation) on the 
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first and the second principal components. According to the ``PCA method B4'' afore-
mentioned, we retain then only these two indicators and discard the rest. After deciding the 
number of indicators to keep, the combination of the retained indicators (RES2 and RES3) is 
the next step. At this level, since variables in the same indices can compensate each other's 
performance, an additive aggregation is employed. Moreover, all variables are considered 
having the same importance, i.e. no weighting is introduced. The Resources indices could be 
then computed as follows: (Eq.9)  

20.510.5= RESRESRES         (9) 

 Repeating the same procedure to calculate the Capacity index (using the Jollifie criteria), the 
first two principal components, which account for nearly 83% of the total variation, should be 
retained but not the third one (see Table5).   
We find that two of indicators CAP2 et CAP4 could be selected to get the following formula 
of Capacity (Eq.10):  

40.520.5= CAPCAPCAP         (10) 

Since the PCA for the remaining components could not be used, as explained above, each of 
these indices are calculated as average of their indicators components as shown in the 
following equations:  

30.520.5= USEUSEUSE         (11) 

30.3320.3310.33= ENVENVENVENV       (12) 

5.2  Aggregation and weighting 
Last step is the aggregation of indices calculated above to assess water poverty level for each 
governorate. The most appropriate aggregation function is the weighted multiplicative 
function, as it does not allow compensability among the different components of the index 
(Pérez2011). The weighting system is assigned through the same multivariate techniques 
afore-mentioned, which determine the better set of weights that explain the largest variation 
in the original components (Slottje1991).   

Since one of the main objectives of the present paper is to determine optimal weights for the 
components constituting the Improved Water Poverty Index IWPI, factor loading scores were 
used to determine the weights. As indicated in the Table6, the first three principal 
components accounting for approximately 97.49% of the variation in the five indexes; could 
be retained as the characteristic root associated are higher than 0.7 (Jollifie criteria). Clearly, 
these first principal components contain most of the statistical information embedded in data. 
To get the final weighting scheme, principal components retained must be weighted with the 
proportion of variance calculated by dividing the square root of eigenvalue of the 
corresponded principal component by the sum of square root of eigenvalue of the three 

principal components extracted (
jj

k





). The greater the proportion, the higher the weight. 

The list of five components along with their weights is presented in the Table7. 

Numerically, the IWPI can be formulated as follows (Eq.13)  
iw

i
EUACRi
XIWPI 

,,,,=

=          (13) 
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Where IWPI is the value of the improved water poverty index, iX  refers to value of 
component i which can be RES, CAP,ACC, USE and ENV, and iw  is the weight associated 
to that component.   

5.3  Main empirical results 
Table8 gives us the main results obtained owing to the original detailed data and the 
improved methodology for the calculation of the WPI. The third column of this table shows 
the IWPI for the 24 Tunisian Governorates. The Index values vary from 22 for Kasserine (the 
poorest region, remember that the Tunisian revolution has started the th17  of December 2010 
from this region) to 71 - 77.42 for the five governorates which form the district of Tunis and 
the littoral region (the most prosperous zones of Tunisia). Looking to the resources 
component (RES), illustrated by the fourth column, notice the opposite values. Indeed the 
water rich governorates are located mostly in Inland (Sidi Bouzid, Jendouba, etc.) while the 
poorest are situated in Coastal zones (Tunis, Sousse, etc.). This table could be easily divided 
in two sub-tables: the first for the inland poor governorates (from Kasserine to Kebilie) and 
the second for the coastal relatively zone (from Mahdia to Ben Arous). 

Figure 1 (Resources Component) and the Figure2 (IWPI) illustrate those important results 
more clearly. Map 1 shows the huge differences between the Inland (relative water resources 
abundance) and Coastal regions (Water poor region). Map 2, which illustrates the IWPI, 
shows that the Coastal region has good water services while the Inland governorates are 
characterized by low IWPI indicating their poverty in terms of access, sanitation and 
necessary water services. 

Figure 3 in the Annexes provides another way to illustrate the WPI component values at 
governorate scale. The Figures (4 to 8) gives us a more detailed illustration of the different 
IWPI components between inland and coastal region. 

6. Summary and Conclusions 
A great deal of effort has been made recently into the development of alternatives to assess 
water scarcity. The water poverty index (WPI) could be considered the most accurate and 
holistic tool that permits more effective water policy making and better understanding of 
water and poverty linkages. It provides a robust methodology for the assessment of 
inadequate management of water services and the related socio-economic and environmental 
impacts. The WPI concerns, at the same time, policy-makers, stakeholders, academics, 
donors and resource managers. Exploring, initially, the different weakness and strengths of 
the index, a revision is presented here in response to the various criticisms which had been 
addressed recently to the WPI. 

The refinements, proposed in this paper, aimed to increase theoretical and statistical 
soundness of the index. For this purpose, an enhanced methodology is described which can 
be summarized in three essential steps: selection of variables to calculate indicators, 
discarding the correlated ones using the ``PCA method B4'', aggregation of the remaining 
indicators to calculate the five components indices (R,C,A,U and E), assignment of weights 
for each index and finally using the geometric function to aggregate indicators to obtain the 
Improved Water Poverty Index (IWPI). This approach has been piloted in Tunisia on a 
governorate scale to test the applicability and usefulness of this composite index. To obtain 
more accurate interpretations IWPI's components are examined individually and then mapped 
to identify visually those governorates that need urgent policy acts. The results disseminated 
through the components and IWPI maps (Figures4 to 8) in the Annexes indicate that water 
poverty in Tunisia follows an heterogeneous spatial pattern. 
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This modest research, mainly with its empirical results, demonstrates that the Tunisian inland 
water rich regions have low IWPI, while coastal regions characterized by very limited water 
resources, have high IWPI. The limited access to water with minimum quality, to sanitation 
and to the basic social infrastructures, can explain, at least partially, why the Tunisian 
revolution has started in those inland regions woefully neglected by the ancient regime. Our 
results will give the new decision makers the means to promote an equitable and sustainable 
development able to narrow the huge gaps between regions. This policy will be the only way 
to stabilize the country and to guarantee a sustainable development necessarily to the 
promotion of a real democracy and justice.  
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Figure 1: Spatial variation of Resources Index 
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Figure 2: Spatial variation of the Improved Water Poverty Index 
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Figure  3: The WPI Component Value at Governorate Scale 
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Figure  4: Resources 
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Figure  5: Capacity 
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Figure  6: Access 
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Figure  7: Use 
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Figure 8: Environment 
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Table  1: Falkenmark Water Stress Indicator 

Index (per capita per year 3m ) Category 
>  1 700  No Stress 
1 000 - 1 700  Stress 
500 - 1 000  Scarcity 
<  500  Absolute Scarcity 

 
 
 

Table  2: Water Poverty Index structure  
Components Indicator Variable 
Resources  Surface water Availability (RES1)   Annual average rainfall 9 
  Phreatic groundwater Availability (RES2)   Phreatic groundwater resources per capita  
  Deep groundwater Availability (RES3)   Deep groundwater resources per capita  
  Variability (RES4)   Coefficient of variation of rainfall  
Capacity  Economic capacity (CAP1)   average per capita expenditure  
  Social capacity (employment) (CAP2)   unemployment rate 
  Social capacity (Education) (CAP3)   Illiteracy rate  
  Social capacity (Health) (CAP4)   Number of beds in hospitals (per capita)  
Access  Percentage of population with   
  access to safe water (ACC1)   
Use  Domestic water use (USE1)   Per capita per day domestic water use  
  Agricultural water use (USE2)   Portion of irrigated lands  
   to lands useful for agriculture  
Environment   Sanitation (ENV1)   Percentage of population with  
   access to sanitation services  
  Water Quality (ENV2)   % of unfit cases after bacteriological analysis  
  Environment studies (ENV3)   Number of environmental studies  

 
 
 

Table  3: Factorability Tests 
Statistic RES  CAP  USE  ENV  
Determinant of the correlation matrix  0.073   0.241   0.997   0.826 
Overall KMO index  0.544   0.713   0.500   0.416  
Bartlett test of sphericity  
- Chi-square   54.433   29.612   0.064   4.054  
- DF   6   6   1   3  
- p-value   0.000   0.000   0.800   0.256  

 
 
 

Table  4: Results of the PCA (Resources Index) 
 Principal Component 
 Comp 1 Comp 2 Comp 3 
Eigenvalues  2.33 1.32 0.25 
Proportion of variance explained  58.29 33.07 6.27 
Cumulative proportion of variance explained  58.29 91.36 97.63 
Eigenvectors     
RES1  0.5758 0.3645 0.0518 
RES2  -0.3611 0.6677 -0.6510 
RES3  -0.5158 0.4305 0.7273 
RES4  0.5215 0.4858 0.2113 

 

                                                        
9The average rainfall is calculated over the period 1901 to 2007. 
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Table  5:  Results of the PCA (Capacity index) 
 Principal Component  
 Comp 1  Comp 2  Comp 3  
Eigenvalues   3.00   0.60   0.31  
Proportion of variance explained   75.08   14.97   7.88  
Cumulative proportion of variance explained   75.08   90.05   97.93  
Eigenvectors     
CAP1   0.5245   -0.3678   0.4352  
CAP2  0.4267  0.8349  0.3337  
CAP3   0.5075   0.0969   -0.8308  
CAP4 0.5342  -0.3978   0.0954  

 
 
 
 

Table 6: Results of the PCA (IWPI) 
  Principal Component  
  Comp 1  Comp 2  Comp 3  Comp 4  
Eigenvalues   3.21   0.76   0.70   0.20  
Proportion of variance explained   64.29   15.28   14.00   3.92  
Cumulative proportion of variance   64.29   79.57   93.57   97.49  
Eigenvectors     
Resources   -0.354   0.366   0.834   -  
Capacity   0.501   -0.294   0.161   -  
Use   0.376   0.809   -0.170   -  
Access   0.521   0.202   0.262   -  
Environment   0.459   -0.289   -0.680   -  

 
 
 
 
 

Table  7: Weights of Components 
Components  Weights before Weights after 
 normalization normalization 
Resources  .11 .14 
Capacity  .22 .29 
Access  .34 .43 
Use  .08 .09 
Environment  .04 .05 
Total  0.79 1 
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Table  8:  The Improved Water Poverty Index and Sub-Indices  
Rank   Governorate   IWPI   RES   CAP   ACC   USE   ENV  
1.   Kasserine   21.99   64.76   3.767   45.5   21.17   39.94  
2.   Sidi Bouzid   34.19   52.06   25   38.2   25.49   40.74  
3.   Kairouan   38.5   53.11   21.92   53.4   27.34   41.69  
4.   ElKef   41.43   66.23   21.69   60.8   24.88   40.83  
5.   Jendouba   41.9   70.74   27.17   51.2   29.47   38.94  
6.   Zaghouane   44.16   63.45   21.67   67.1   29.26   50.62  
7.   Siliana   44.36   60.73   36.08   54.3   20.26   46.4  
8.   Gafsa   47.13   41.28   25.84   78   32.04   51.97  
9.   Tataouine   49.18   35.1   47.22   71.6   18.65   40.39  
10.  Beja   51.81   69.14   40.87   64.1   29.39   42.49  
11.  Gabes   56.36   37.56   47.91   81.5   32.28   52.11  
12.  Medenine   56.86   26.97   65.37   74.6   33.07   55.75  
13.  Bizerte   58.18   76.49   39.48   77.3   36.14   51.91  
14.  Kebilie   61.15   22.4   53.93   90.5   79.47   41.84  
15.  Mahdia   62.05   38   81.6   74.7   27.59   51.01  
16.  Tozeur   65.33   50.96   43.31   92.1   78.51   47.99  
17.  Sfax   66.21   35.03   80.58   80   39.07   68.84  
18.  Nabeul   70.27   81.2   61.06   82.6   46.55   57.8  
19.  Manouba   71.53   58.88   70.89   90.2   39.79   55.27  
20.  Tunis   71.71   29.79   77.74   97   50.62   73.9  
21.  Sousse   72.38   40.75   80.92   92.7   38.99   73.37  
22.  Monastir   73.36   35.5   93.59   93.2   35.11   73.12  
23.  Ariana   77.27   39.63   88.01   95.1   59.31   66.36  
24.  Ben Arous   77.42   46.73   79.45   94.6   54.43   92.31  

 
 
 
 


